169 lines
6.1 KiB
C++
169 lines
6.1 KiB
C++
|
/*
|
||
|
---------------------------------------------------------------------------
|
||
|
Open Asset Import Library (assimp)
|
||
|
---------------------------------------------------------------------------
|
||
|
|
||
|
Copyright (c) 2006-2019, assimp team
|
||
|
|
||
|
|
||
|
|
||
|
All rights reserved.
|
||
|
|
||
|
Redistribution and use of this software in source and binary forms,
|
||
|
with or without modification, are permitted provided that the following
|
||
|
conditions are met:
|
||
|
|
||
|
* Redistributions of source code must retain the above
|
||
|
copyright notice, this list of conditions and the
|
||
|
following disclaimer.
|
||
|
|
||
|
* Redistributions in binary form must reproduce the above
|
||
|
copyright notice, this list of conditions and the
|
||
|
following disclaimer in the documentation and/or other
|
||
|
materials provided with the distribution.
|
||
|
|
||
|
* Neither the name of the assimp team, nor the names of its
|
||
|
contributors may be used to endorse or promote products
|
||
|
derived from this software without specific prior
|
||
|
written permission of the assimp team.
|
||
|
|
||
|
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
||
|
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
||
|
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
||
|
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
||
|
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
||
|
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
||
|
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
||
|
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
||
|
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
||
|
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
||
|
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||
|
---------------------------------------------------------------------------
|
||
|
*/
|
||
|
|
||
|
/** @file Implementation of the helper class to quickly find
|
||
|
vertices close to a given position. Special implementation for
|
||
|
the 3ds loader handling smooth groups correctly */
|
||
|
|
||
|
#include <assimp/SGSpatialSort.h>
|
||
|
|
||
|
using namespace Assimp;
|
||
|
|
||
|
// ------------------------------------------------------------------------------------------------
|
||
|
SGSpatialSort::SGSpatialSort()
|
||
|
{
|
||
|
// define the reference plane. We choose some arbitrary vector away from all basic axises
|
||
|
// in the hope that no model spreads all its vertices along this plane.
|
||
|
mPlaneNormal.Set( 0.8523f, 0.34321f, 0.5736f);
|
||
|
mPlaneNormal.Normalize();
|
||
|
}
|
||
|
// ------------------------------------------------------------------------------------------------
|
||
|
// Destructor
|
||
|
SGSpatialSort::~SGSpatialSort()
|
||
|
{
|
||
|
// nothing to do here, everything destructs automatically
|
||
|
}
|
||
|
// ------------------------------------------------------------------------------------------------
|
||
|
void SGSpatialSort::Add(const aiVector3D& vPosition, unsigned int index,
|
||
|
unsigned int smoothingGroup)
|
||
|
{
|
||
|
// store position by index and distance
|
||
|
float distance = vPosition * mPlaneNormal;
|
||
|
mPositions.push_back( Entry( index, vPosition,
|
||
|
distance, smoothingGroup));
|
||
|
}
|
||
|
// ------------------------------------------------------------------------------------------------
|
||
|
void SGSpatialSort::Prepare()
|
||
|
{
|
||
|
// now sort the array ascending by distance.
|
||
|
std::sort( this->mPositions.begin(), this->mPositions.end());
|
||
|
}
|
||
|
// ------------------------------------------------------------------------------------------------
|
||
|
// Returns an iterator for all positions close to the given position.
|
||
|
void SGSpatialSort::FindPositions( const aiVector3D& pPosition,
|
||
|
uint32_t pSG,
|
||
|
float pRadius,
|
||
|
std::vector<unsigned int>& poResults,
|
||
|
bool exactMatch /*= false*/) const
|
||
|
{
|
||
|
float dist = pPosition * mPlaneNormal;
|
||
|
float minDist = dist - pRadius, maxDist = dist + pRadius;
|
||
|
|
||
|
// clear the array
|
||
|
poResults.clear();
|
||
|
|
||
|
// quick check for positions outside the range
|
||
|
if( mPositions.empty() )
|
||
|
return;
|
||
|
if( maxDist < mPositions.front().mDistance)
|
||
|
return;
|
||
|
if( minDist > mPositions.back().mDistance)
|
||
|
return;
|
||
|
|
||
|
// do a binary search for the minimal distance to start the iteration there
|
||
|
unsigned int index = (unsigned int)mPositions.size() / 2;
|
||
|
unsigned int binaryStepSize = (unsigned int)mPositions.size() / 4;
|
||
|
while( binaryStepSize > 1)
|
||
|
{
|
||
|
if( mPositions[index].mDistance < minDist)
|
||
|
index += binaryStepSize;
|
||
|
else
|
||
|
index -= binaryStepSize;
|
||
|
|
||
|
binaryStepSize /= 2;
|
||
|
}
|
||
|
|
||
|
// depending on the direction of the last step we need to single step a bit back or forth
|
||
|
// to find the actual beginning element of the range
|
||
|
while( index > 0 && mPositions[index].mDistance > minDist)
|
||
|
index--;
|
||
|
while( index < (mPositions.size() - 1) && mPositions[index].mDistance < minDist)
|
||
|
index++;
|
||
|
|
||
|
// Mow start iterating from there until the first position lays outside of the distance range.
|
||
|
// Add all positions inside the distance range within the given radius to the result aray
|
||
|
|
||
|
float squareEpsilon = pRadius * pRadius;
|
||
|
std::vector<Entry>::const_iterator it = mPositions.begin() + index;
|
||
|
std::vector<Entry>::const_iterator end = mPositions.end();
|
||
|
|
||
|
if (exactMatch)
|
||
|
{
|
||
|
while( it->mDistance < maxDist)
|
||
|
{
|
||
|
if((it->mPosition - pPosition).SquareLength() < squareEpsilon && it->mSmoothGroups == pSG)
|
||
|
{
|
||
|
poResults.push_back( it->mIndex);
|
||
|
}
|
||
|
++it;
|
||
|
if( end == it )break;
|
||
|
}
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
// if the given smoothing group is 0, we'll return all surrounding vertices
|
||
|
if (!pSG)
|
||
|
{
|
||
|
while( it->mDistance < maxDist)
|
||
|
{
|
||
|
if((it->mPosition - pPosition).SquareLength() < squareEpsilon)
|
||
|
poResults.push_back( it->mIndex);
|
||
|
++it;
|
||
|
if( end == it)break;
|
||
|
}
|
||
|
}
|
||
|
else while( it->mDistance < maxDist)
|
||
|
{
|
||
|
if((it->mPosition - pPosition).SquareLength() < squareEpsilon &&
|
||
|
(it->mSmoothGroups & pSG || !it->mSmoothGroups))
|
||
|
{
|
||
|
poResults.push_back( it->mIndex);
|
||
|
}
|
||
|
++it;
|
||
|
if( end == it)break;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
|