2012-02-02 02:06:08 +00:00
|
|
|
/*
|
|
|
|
---------------------------------------------------------------------------
|
2012-02-03 03:38:30 +00:00
|
|
|
Open Asset Import Library (assimp)
|
2012-02-02 02:06:08 +00:00
|
|
|
---------------------------------------------------------------------------
|
|
|
|
|
2012-02-03 03:38:30 +00:00
|
|
|
Copyright (c) 2006-2012, assimp team
|
2012-02-02 02:06:08 +00:00
|
|
|
|
|
|
|
All rights reserved.
|
|
|
|
|
|
|
|
Redistribution and use of this software in source and binary forms,
|
|
|
|
with or without modification, are permitted provided that the following
|
|
|
|
conditions are met:
|
|
|
|
|
|
|
|
* Redistributions of source code must retain the above
|
|
|
|
copyright notice, this list of conditions and the
|
|
|
|
following disclaimer.
|
|
|
|
|
|
|
|
* Redistributions in binary form must reproduce the above
|
|
|
|
copyright notice, this list of conditions and the
|
|
|
|
following disclaimer in the documentation and/or other
|
|
|
|
materials provided with the distribution.
|
|
|
|
|
2012-02-03 03:38:30 +00:00
|
|
|
* Neither the name of the assimp team, nor the names of its
|
2012-02-02 02:06:08 +00:00
|
|
|
contributors may be used to endorse or promote products
|
|
|
|
derived from this software without specific prior
|
2012-02-03 03:38:30 +00:00
|
|
|
written permission of the assimp team.
|
2012-02-02 02:06:08 +00:00
|
|
|
|
|
|
|
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
|
|
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
|
|
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
|
|
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
|
|
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
|
|
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
|
|
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
|
|
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
|
|
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
|
|
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
|
|
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
|
|
---------------------------------------------------------------------------
|
|
|
|
*/
|
|
|
|
|
|
|
|
/** @file aiQuaterniont.inl
|
|
|
|
* @brief Inline implementation of aiQuaterniont<TReal> operators
|
|
|
|
*/
|
|
|
|
#ifndef AI_QUATERNION_INL_INC
|
|
|
|
#define AI_QUATERNION_INL_INC
|
|
|
|
|
|
|
|
#ifdef __cplusplus
|
|
|
|
#include "aiQuaternion.h"
|
|
|
|
|
|
|
|
// ---------------------------------------------------------------------------
|
|
|
|
template<typename TReal>
|
|
|
|
bool aiQuaterniont<TReal>::operator== (const aiQuaterniont& o) const
|
|
|
|
{
|
|
|
|
return x == o.x && y == o.y && z == o.z && w == o.w;
|
|
|
|
}
|
|
|
|
|
|
|
|
// ---------------------------------------------------------------------------
|
|
|
|
template<typename TReal>
|
|
|
|
bool aiQuaterniont<TReal>::operator!= (const aiQuaterniont& o) const
|
|
|
|
{
|
|
|
|
return !(*this == o);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
// ---------------------------------------------------------------------------
|
|
|
|
// Constructs a quaternion from a rotation matrix
|
|
|
|
template<typename TReal>
|
|
|
|
inline aiQuaterniont<TReal>::aiQuaterniont( const aiMatrix3x3t<TReal> &pRotMatrix)
|
|
|
|
{
|
|
|
|
TReal t = 1 + pRotMatrix.a1 + pRotMatrix.b2 + pRotMatrix.c3;
|
|
|
|
|
|
|
|
// large enough
|
|
|
|
if( t > static_cast<TReal>(0.001))
|
|
|
|
{
|
|
|
|
TReal s = sqrt( t) * static_cast<TReal>(2.0);
|
|
|
|
x = (pRotMatrix.c2 - pRotMatrix.b3) / s;
|
|
|
|
y = (pRotMatrix.a3 - pRotMatrix.c1) / s;
|
|
|
|
z = (pRotMatrix.b1 - pRotMatrix.a2) / s;
|
|
|
|
w = static_cast<TReal>(0.25) * s;
|
|
|
|
} // else we have to check several cases
|
|
|
|
else if( pRotMatrix.a1 > pRotMatrix.b2 && pRotMatrix.a1 > pRotMatrix.c3 )
|
|
|
|
{
|
|
|
|
// Column 0:
|
|
|
|
TReal s = sqrt( static_cast<TReal>(1.0) + pRotMatrix.a1 - pRotMatrix.b2 - pRotMatrix.c3) * static_cast<TReal>(2.0);
|
|
|
|
x = static_cast<TReal>(0.25) * s;
|
|
|
|
y = (pRotMatrix.b1 + pRotMatrix.a2) / s;
|
|
|
|
z = (pRotMatrix.a3 + pRotMatrix.c1) / s;
|
|
|
|
w = (pRotMatrix.c2 - pRotMatrix.b3) / s;
|
|
|
|
}
|
|
|
|
else if( pRotMatrix.b2 > pRotMatrix.c3)
|
|
|
|
{
|
|
|
|
// Column 1:
|
|
|
|
TReal s = sqrt( static_cast<TReal>(1.0) + pRotMatrix.b2 - pRotMatrix.a1 - pRotMatrix.c3) * static_cast<TReal>(2.0);
|
|
|
|
x = (pRotMatrix.b1 + pRotMatrix.a2) / s;
|
|
|
|
y = static_cast<TReal>(0.25) * s;
|
|
|
|
z = (pRotMatrix.c2 + pRotMatrix.b3) / s;
|
|
|
|
w = (pRotMatrix.a3 - pRotMatrix.c1) / s;
|
|
|
|
} else
|
|
|
|
{
|
|
|
|
// Column 2:
|
|
|
|
TReal s = sqrt( static_cast<TReal>(1.0) + pRotMatrix.c3 - pRotMatrix.a1 - pRotMatrix.b2) * static_cast<TReal>(2.0);
|
|
|
|
x = (pRotMatrix.a3 + pRotMatrix.c1) / s;
|
|
|
|
y = (pRotMatrix.c2 + pRotMatrix.b3) / s;
|
|
|
|
z = static_cast<TReal>(0.25) * s;
|
|
|
|
w = (pRotMatrix.b1 - pRotMatrix.a2) / s;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// ---------------------------------------------------------------------------
|
|
|
|
// Construction from euler angles
|
|
|
|
template<typename TReal>
|
|
|
|
inline aiQuaterniont<TReal>::aiQuaterniont( TReal fPitch, TReal fYaw, TReal fRoll )
|
|
|
|
{
|
|
|
|
const TReal fSinPitch(sin(fPitch*static_cast<TReal>(0.5)));
|
|
|
|
const TReal fCosPitch(cos(fPitch*static_cast<TReal>(0.5)));
|
|
|
|
const TReal fSinYaw(sin(fYaw*static_cast<TReal>(0.5)));
|
|
|
|
const TReal fCosYaw(cos(fYaw*static_cast<TReal>(0.5)));
|
|
|
|
const TReal fSinRoll(sin(fRoll*static_cast<TReal>(0.5)));
|
|
|
|
const TReal fCosRoll(cos(fRoll*static_cast<TReal>(0.5)));
|
|
|
|
const TReal fCosPitchCosYaw(fCosPitch*fCosYaw);
|
|
|
|
const TReal fSinPitchSinYaw(fSinPitch*fSinYaw);
|
|
|
|
x = fSinRoll * fCosPitchCosYaw - fCosRoll * fSinPitchSinYaw;
|
|
|
|
y = fCosRoll * fSinPitch * fCosYaw + fSinRoll * fCosPitch * fSinYaw;
|
|
|
|
z = fCosRoll * fCosPitch * fSinYaw - fSinRoll * fSinPitch * fCosYaw;
|
|
|
|
w = fCosRoll * fCosPitchCosYaw + fSinRoll * fSinPitchSinYaw;
|
|
|
|
}
|
|
|
|
|
|
|
|
// ---------------------------------------------------------------------------
|
|
|
|
// Returns a matrix representation of the quaternion
|
|
|
|
template<typename TReal>
|
|
|
|
inline aiMatrix3x3t<TReal> aiQuaterniont<TReal>::GetMatrix() const
|
|
|
|
{
|
|
|
|
aiMatrix3x3t<TReal> resMatrix;
|
|
|
|
resMatrix.a1 = static_cast<TReal>(1.0) - static_cast<TReal>(2.0) * (y * y + z * z);
|
|
|
|
resMatrix.a2 = static_cast<TReal>(2.0) * (x * y - z * w);
|
|
|
|
resMatrix.a3 = static_cast<TReal>(2.0) * (x * z + y * w);
|
|
|
|
resMatrix.b1 = static_cast<TReal>(2.0) * (x * y + z * w);
|
|
|
|
resMatrix.b2 = static_cast<TReal>(1.0) - static_cast<TReal>(2.0) * (x * x + z * z);
|
|
|
|
resMatrix.b3 = static_cast<TReal>(2.0) * (y * z - x * w);
|
|
|
|
resMatrix.c1 = static_cast<TReal>(2.0) * (x * z - y * w);
|
|
|
|
resMatrix.c2 = static_cast<TReal>(2.0) * (y * z + x * w);
|
|
|
|
resMatrix.c3 = static_cast<TReal>(1.0) - static_cast<TReal>(2.0) * (x * x + y * y);
|
|
|
|
|
|
|
|
return resMatrix;
|
|
|
|
}
|
|
|
|
|
|
|
|
// ---------------------------------------------------------------------------
|
|
|
|
// Construction from an axis-angle pair
|
|
|
|
template<typename TReal>
|
|
|
|
inline aiQuaterniont<TReal>::aiQuaterniont( aiVector3t<TReal> axis, TReal angle)
|
|
|
|
{
|
|
|
|
axis.Normalize();
|
|
|
|
|
|
|
|
const TReal sin_a = sin( angle / 2 );
|
|
|
|
const TReal cos_a = cos( angle / 2 );
|
|
|
|
x = axis.x * sin_a;
|
|
|
|
y = axis.y * sin_a;
|
|
|
|
z = axis.z * sin_a;
|
|
|
|
w = cos_a;
|
|
|
|
}
|
|
|
|
// ---------------------------------------------------------------------------
|
|
|
|
// Construction from am existing, normalized quaternion
|
|
|
|
template<typename TReal>
|
|
|
|
inline aiQuaterniont<TReal>::aiQuaterniont( aiVector3t<TReal> normalized)
|
|
|
|
{
|
|
|
|
x = normalized.x;
|
|
|
|
y = normalized.y;
|
|
|
|
z = normalized.z;
|
|
|
|
|
|
|
|
const TReal t = static_cast<TReal>(1.0) - (x*x) - (y*y) - (z*z);
|
|
|
|
|
|
|
|
if (t < static_cast<TReal>(0.0)) {
|
|
|
|
w = static_cast<TReal>(0.0);
|
|
|
|
}
|
|
|
|
else w = sqrt (t);
|
|
|
|
}
|
|
|
|
|
|
|
|
// ---------------------------------------------------------------------------
|
|
|
|
// Performs a spherical interpolation between two quaternions
|
|
|
|
// Implementation adopted from the gmtl project. All others I found on the net fail in some cases.
|
|
|
|
// Congrats, gmtl!
|
|
|
|
template<typename TReal>
|
|
|
|
inline void aiQuaterniont<TReal>::Interpolate( aiQuaterniont& pOut, const aiQuaterniont& pStart, const aiQuaterniont& pEnd, TReal pFactor)
|
|
|
|
{
|
|
|
|
// calc cosine theta
|
|
|
|
TReal cosom = pStart.x * pEnd.x + pStart.y * pEnd.y + pStart.z * pEnd.z + pStart.w * pEnd.w;
|
|
|
|
|
|
|
|
// adjust signs (if necessary)
|
|
|
|
aiQuaterniont end = pEnd;
|
|
|
|
if( cosom < static_cast<TReal>(0.0))
|
|
|
|
{
|
|
|
|
cosom = -cosom;
|
|
|
|
end.x = -end.x; // Reverse all signs
|
|
|
|
end.y = -end.y;
|
|
|
|
end.z = -end.z;
|
|
|
|
end.w = -end.w;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Calculate coefficients
|
|
|
|
TReal sclp, sclq;
|
|
|
|
if( (static_cast<TReal>(1.0) - cosom) > static_cast<TReal>(0.0001)) // 0.0001 -> some epsillon
|
|
|
|
{
|
|
|
|
// Standard case (slerp)
|
|
|
|
TReal omega, sinom;
|
|
|
|
omega = acos( cosom); // extract theta from dot product's cos theta
|
|
|
|
sinom = sin( omega);
|
|
|
|
sclp = sin( (static_cast<TReal>(1.0) - pFactor) * omega) / sinom;
|
|
|
|
sclq = sin( pFactor * omega) / sinom;
|
|
|
|
} else
|
|
|
|
{
|
|
|
|
// Very close, do linear interp (because it's faster)
|
|
|
|
sclp = static_cast<TReal>(1.0) - pFactor;
|
|
|
|
sclq = pFactor;
|
|
|
|
}
|
|
|
|
|
|
|
|
pOut.x = sclp * pStart.x + sclq * end.x;
|
|
|
|
pOut.y = sclp * pStart.y + sclq * end.y;
|
|
|
|
pOut.z = sclp * pStart.z + sclq * end.z;
|
|
|
|
pOut.w = sclp * pStart.w + sclq * end.w;
|
|
|
|
}
|
|
|
|
|
|
|
|
// ---------------------------------------------------------------------------
|
|
|
|
template<typename TReal>
|
|
|
|
inline aiQuaterniont<TReal>& aiQuaterniont<TReal>::Normalize()
|
|
|
|
{
|
|
|
|
// compute the magnitude and divide through it
|
|
|
|
const TReal mag = sqrt(x*x + y*y + z*z + w*w);
|
|
|
|
if (mag)
|
|
|
|
{
|
|
|
|
const TReal invMag = static_cast<TReal>(1.0)/mag;
|
|
|
|
x *= invMag;
|
|
|
|
y *= invMag;
|
|
|
|
z *= invMag;
|
|
|
|
w *= invMag;
|
|
|
|
}
|
|
|
|
return *this;
|
|
|
|
}
|
|
|
|
|
|
|
|
// ---------------------------------------------------------------------------
|
|
|
|
template<typename TReal>
|
|
|
|
inline aiQuaterniont<TReal> aiQuaterniont<TReal>::operator* (const aiQuaterniont& t) const
|
|
|
|
{
|
|
|
|
return aiQuaterniont(w*t.w - x*t.x - y*t.y - z*t.z,
|
|
|
|
w*t.x + x*t.w + y*t.z - z*t.y,
|
|
|
|
w*t.y + y*t.w + z*t.x - x*t.z,
|
|
|
|
w*t.z + z*t.w + x*t.y - y*t.x);
|
|
|
|
}
|
|
|
|
|
|
|
|
// ---------------------------------------------------------------------------
|
|
|
|
template<typename TReal>
|
|
|
|
inline aiQuaterniont<TReal>& aiQuaterniont<TReal>::Conjugate ()
|
|
|
|
{
|
|
|
|
x = -x;
|
|
|
|
y = -y;
|
|
|
|
z = -z;
|
|
|
|
return *this;
|
|
|
|
}
|
|
|
|
|
|
|
|
// ---------------------------------------------------------------------------
|
|
|
|
template<typename TReal>
|
|
|
|
inline aiVector3t<TReal> aiQuaterniont<TReal>::Rotate (const aiVector3t<TReal>& v)
|
|
|
|
{
|
|
|
|
aiQuaterniont q2(0.f,v.x,v.y,v.z), q = *this, qinv = q;
|
|
|
|
q.Conjugate();
|
|
|
|
|
|
|
|
q = q*q2*qinv;
|
|
|
|
return aiVector3t<TReal>(q.x,q.y,q.z);
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
#endif
|
|
|
|
#endif
|