assimp/code/3DSLoader.cpp

1435 lines
42 KiB
C++
Raw Normal View History

/*
---------------------------------------------------------------------------
Open Asset Import Library (ASSIMP)
---------------------------------------------------------------------------
Copyright (c) 2006-2008, ASSIMP Development Team
All rights reserved.
Redistribution and use of this software in source and binary forms,
with or without modification, are permitted provided that the following
conditions are met:
* Redistributions of source code must retain the above
copyright notice, this list of conditions and the
following disclaimer.
* Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the
following disclaimer in the documentation and/or other
materials provided with the distribution.
* Neither the name of the ASSIMP team, nor the names of its
contributors may be used to endorse or promote products
derived from this software without specific prior
written permission of the ASSIMP Development Team.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
---------------------------------------------------------------------------
*/
/** @file Implementation of the 3ds importer class */
#include "AssimpPCH.h"
// internal headers
#include "3DSLoader.h"
#include "TextureTransform.h"
using namespace Assimp;
// ------------------------------------------------------------------------------------------------
// Begins a new parsing block
// - Reads the current chunk and validates it
// - computes its length
#define ASSIMP_3DS_BEGIN_CHUNK() \
Discreet3DS::Chunk chunk; \
ReadChunk(&chunk); \
int chunkSize = chunk.Size-sizeof(Discreet3DS::Chunk); \
int oldReadLimit = stream->GetReadLimit(); \
stream->SetReadLimit(stream->GetCurrentPos() + chunkSize);
// ------------------------------------------------------------------------------------------------
// End a parsing block
// Must follow at the end of each parsing block
#define ASSIMP_3DS_END_CHUNK() \
stream->SkipToReadLimit(); \
stream->SetReadLimit(oldReadLimit); \
if (stream->GetRemainingSizeToLimit() == 0)return;
// ------------------------------------------------------------------------------------------------
// Constructor to be privately used by Importer
Discreet3DSImporter::Discreet3DSImporter()
{
}
// ------------------------------------------------------------------------------------------------
// Destructor, private as well
Discreet3DSImporter::~Discreet3DSImporter()
{
}
// ------------------------------------------------------------------------------------------------
// Returns whether the class can handle the format of the given file.
bool Discreet3DSImporter::CanRead( const std::string& pFile, IOSystem* pIOHandler) const
{
// simple check of file extension is enough for the moment
std::string::size_type pos = pFile.find_last_of('.');
// no file extension - can't read
if( pos == std::string::npos)
return false;
std::string extension = pFile.substr( pos);
for (std::string::iterator i = extension.begin(); i != extension.end();++i)
*i = ::tolower(*i);
return (extension == ".3ds");
}
// ------------------------------------------------------------------------------------------------
// Setup configuration properties
void Discreet3DSImporter::SetupProperties(const Importer* pImp)
{
// nothing to be done for the moment
}
// ------------------------------------------------------------------------------------------------
// Imports the given file into the given scene structure.
void Discreet3DSImporter::InternReadFile( const std::string& pFile,
aiScene* pScene, IOSystem* pIOHandler)
{
StreamReaderLE stream(pIOHandler->Open(pFile,"rb"));
this->stream = &stream;
// We should have at least one chunk
if (stream.GetRemainingSize() < 16)
throw new ImportErrorException("3DS file is either empty or corrupt: " + pFile);
// Allocate our temporary 3DS representation
mScene = new D3DS::Scene();
// Initialize members
mLastNodeIndex = -1;
mCurrentNode = new D3DS::Node();
mRootNode = mCurrentNode;
mRootNode->mHierarchyPos = -1;
mRootNode->mHierarchyIndex = -1;
mRootNode->mParent = NULL;
mMasterScale = 1.0f;
mBackgroundImage = "";
bHasBG = false;
// Parse the file
ParseMainChunk();
// Process all meshes in the file. First check whether all
// face indices haev valid values. The generate our
// internal verbose representation. Finally compute normal
// vectors from the smoothing groups we read from the
// file.
for (std::vector<D3DS::Mesh>::iterator i = mScene->mMeshes.begin(),
end = mScene->mMeshes.end(); i != end;++i)
{
CheckIndices(*i);
MakeUnique (*i);
ComputeNormalsWithSmoothingsGroups<D3DS::Face>(*i);
}
// Replace all occurences of the default material with a
// valid material. Generate it if no material containing
// DEFAULT in its name has been found in the file
ReplaceDefaultMaterial();
// Convert the scene from our internal representation to an
// aiScene object. This involves copying all meshes, lights
// and cameras to the scene
ConvertScene(pScene);
// Generate the node graph for the scene. This is a little bit
// tricky since we'll need to split some meshes into submeshes
GenerateNodeGraph(pScene);
// Now apply the master scaling factor to the scene
ApplyMasterScale(pScene);
// Delete our internal scene representation and the root
// node, so the whole hierarchy will follow
delete mRootNode;
delete mScene;
AI_DEBUG_INVALIDATE_PTR(mRootNode);
AI_DEBUG_INVALIDATE_PTR(mScene);
AI_DEBUG_INVALIDATE_PTR(this->stream);
}
// ------------------------------------------------------------------------------------------------
// Applies a master-scaling factor to the imported scene
void Discreet3DSImporter::ApplyMasterScale(aiScene* pScene)
{
// There are some 3DS files with a zero scaling factor
if (!mMasterScale)mMasterScale = 1.0f;
else mMasterScale = 1.0f / mMasterScale;
// Construct an uniform scaling matrix and multiply with it
pScene->mRootNode->mTransformation *= aiMatrix4x4(
mMasterScale,0.0f, 0.0f, 0.0f,
0.0f, mMasterScale,0.0f, 0.0f,
0.0f, 0.0f, mMasterScale,0.0f,
0.0f, 0.0f, 0.0f, 1.0f);
// Check whether a scaling track is assigned to the root node.
}
// ------------------------------------------------------------------------------------------------
// Reads a new chunk from the file
void Discreet3DSImporter::ReadChunk(Discreet3DS::Chunk* pcOut)
{
ai_assert(pcOut != NULL);
pcOut->Flag = stream->GetI2();
pcOut->Size = stream->GetI4();
if (pcOut->Size - sizeof(Discreet3DS::Chunk) > stream->GetRemainingSize())
throw new ImportErrorException("Chunk is too large");
if (pcOut->Size - sizeof(Discreet3DS::Chunk) > stream->GetRemainingSizeToLimit())
DefaultLogger::get()->error("3DS: Chunk overflow");
}
// ------------------------------------------------------------------------------------------------
// Skip a chunk
void Discreet3DSImporter::SkipChunk()
{
Discreet3DS::Chunk psChunk;
ReadChunk(&psChunk);
stream->IncPtr(psChunk.Size-sizeof(Discreet3DS::Chunk));
return;
}
// ------------------------------------------------------------------------------------------------
// Process the primary chunk of the file
void Discreet3DSImporter::ParseMainChunk()
{
ASSIMP_3DS_BEGIN_CHUNK();
// get chunk type
switch (chunk.Flag)
{
case Discreet3DS::CHUNK_MAIN:
ParseEditorChunk();
break;
};
ASSIMP_3DS_END_CHUNK();
// recursively continue processing this hierarchy level
return ParseMainChunk();
}
// ------------------------------------------------------------------------------------------------
void Discreet3DSImporter::ParseEditorChunk()
{
ASSIMP_3DS_BEGIN_CHUNK();
// get chunk type
switch (chunk.Flag)
{
case Discreet3DS::CHUNK_OBJMESH:
ParseObjectChunk();
break;
// NOTE: In several documentations in the internet this
// chunk appears at different locations
case Discreet3DS::CHUNK_KEYFRAMER:
ParseKeyframeChunk();
break;
case Discreet3DS::CHUNK_VERSION:
{
// print the version number
char buff[10];
ASSIMP_itoa10(buff,stream->GetI2());
DefaultLogger::get()->info(std::string("3DS file format version: ") + buff);
}
break;
};
ASSIMP_3DS_END_CHUNK();
// recursively continue processing this hierarchy level
return ParseEditorChunk();
}
// ------------------------------------------------------------------------------------------------
void Discreet3DSImporter::ParseObjectChunk()
{
ASSIMP_3DS_BEGIN_CHUNK();
// get chunk type
switch (chunk.Flag)
{
case Discreet3DS::CHUNK_OBJBLOCK:
{
unsigned int cnt = 0;
const char* sz = (const char*)stream->GetPtr();
// Get the name of the geometry object
while (stream->GetI1())++cnt;
ParseChunk(sz,cnt);
}
break;
case Discreet3DS::CHUNK_MAT_MATERIAL:
// Add a new material to the list
mScene->mMaterials.push_back(D3DS::Material());
ParseMaterialChunk();
break;
case Discreet3DS::CHUNK_AMBCOLOR:
// This is the ambient base color of the scene.
// We add it to the ambient color of all materials
ParseColorChunk(&mClrAmbient,true);
if (is_qnan(mClrAmbient.r))
{
// We failed to read the ambient base color.
DefaultLogger::get()->error("3DS: Failed to read ambient base color");
mClrAmbient.r = mClrAmbient.g = mClrAmbient.b = 0.0f;
}
break;
case Discreet3DS::CHUNK_BIT_MAP:
{
// Specifies the background image. The string should already be
// properly 0 terminated but we need to be sure
unsigned int cnt = 0;
const char* sz = (const char*)stream->GetPtr();
while (stream->GetI1())++cnt;
mBackgroundImage = std::string(sz,cnt);
}
break;
case Discreet3DS::CHUNK_BIT_MAP_EXISTS:
bHasBG = true;
break;
case Discreet3DS::CHUNK_MASTER_SCALE:
// Scene master scaling factor
mMasterScale = stream->GetF4();
break;
};
ASSIMP_3DS_END_CHUNK();
// recursively continue processing this hierarchy level
return ParseObjectChunk();
}
// ------------------------------------------------------------------------------------------------
void Discreet3DSImporter::ParseChunk(const char* name, unsigned int num)
{
ASSIMP_3DS_BEGIN_CHUNK();
// get chunk type
switch (chunk.Flag)
{
case Discreet3DS::CHUNK_TRIMESH:
{
// this starts a new triangle mesh
mScene->mMeshes.push_back(D3DS::Mesh());
D3DS::Mesh& m = mScene->mMeshes.back();
// Setup the name of the mesh
m.mName = std::string(name, num);
// Read mesh chunks
ParseMeshChunk();
}
break;
case Discreet3DS::CHUNK_LIGHT:
{
// This starts a new light
aiLight* light = new aiLight();
mScene->mLights.push_back(light);
light->mName.Set(std::string(name, num));
// First read the position of the light
light->mPosition.x = stream->GetF4();
light->mPosition.y = stream->GetF4();
light->mPosition.z = stream->GetF4();
light->mColorDiffuse = aiColor3D(1.f,1.f,1.f);
// Now check for further subchunks (excluding color)
int8_t* p = stream->GetPtr();
ParseLightChunk();
// The specular light color is identical the the diffuse light
// color. The ambient light color is equal to the ambient base
// color of the whole scene.
light->mColorSpecular = light->mColorDiffuse;
light->mColorAmbient = mClrAmbient;
if (light->mType == aiLightSource_UNDEFINED)
{
// It must be a point light
light->mType = aiLightSource_POINT;
}}
break;
case Discreet3DS::CHUNK_CAMERA:
{
// This starts a new camera
aiCamera* camera = new aiCamera();
mScene->mCameras.push_back(camera);
camera->mName.Set(std::string(name, num));
// Camera position and look-at vector are difficult to handle.
// If an animation track is given, we must make sure that
// the track is relative to these values - or , easier
// we must copy the information here to the node matrix of
// the camera's parent in the graph.
// First read the position of the camera
camera->mPosition.x = stream->GetF4();
camera->mPosition.y = stream->GetF4();
camera->mPosition.z = stream->GetF4();
// Then the camera target
camera->mLookAt.x = stream->GetF4() - camera->mPosition.x;
camera->mLookAt.y = stream->GetF4() - camera->mPosition.y;
camera->mLookAt.z = stream->GetF4() - camera->mPosition.z;
camera->mLookAt.Normalize();
// And finally - the camera rotation angle, in
// counter clockwise direction
float angle = AI_DEG_TO_RAD( stream->GetF4() );
aiQuaternion quat(camera->mLookAt,angle);
camera->mUp = quat.GetMatrix() * aiVector3D(0.f,1.f,0.f);
// Read the lense angle
camera->mHorizontalFOV = AI_DEG_TO_RAD ( stream->GetF4() );
if (camera->mHorizontalFOV < 0.001f)
camera->mHorizontalFOV = AI_DEG_TO_RAD(45.f);
}
break;
};
ASSIMP_3DS_END_CHUNK();
// recursively continue processing this hierarchy level
return ParseChunk(name,num);
}
// ------------------------------------------------------------------------------------------------
void Discreet3DSImporter::ParseLightChunk()
{
ASSIMP_3DS_BEGIN_CHUNK();
aiLight* light = mScene->mLights.back();
// get chunk type
switch (chunk.Flag)
{
case Discreet3DS::CHUNK_SPOTLIGHT:
// Now we can be sure that the light is a spot light
light->mType = aiLightSource_SPOT;
// We wouldn't need to normalize here, but we do it
light->mDirection.x = stream->GetF4() - light->mPosition.x;
light->mDirection.y = stream->GetF4() - light->mPosition.y;
light->mDirection.z = stream->GetF4() - light->mPosition.z;
light->mDirection.Normalize();
// Now the hotspot and falloff angles - in degrees
light->mAngleInnerCone = AI_DEG_TO_RAD( stream->GetF4() );
// FIX: the falloff angle is just an offset
light->mAngleOuterCone = light->mAngleInnerCone+AI_DEG_TO_RAD( stream->GetF4() );
break;
// intensity multiplier
case Discreet3DS::CHUNK_DL_MULTIPLIER:
light->mColorDiffuse = light->mColorDiffuse * stream->GetF4();
break;
// light color
case Discreet3DS::CHUNK_RGBF:
case Discreet3DS::CHUNK_LINRGBF:
light->mColorDiffuse.r *= stream->GetF4();
light->mColorDiffuse.g *= stream->GetF4();
light->mColorDiffuse.b *= stream->GetF4();
break;
// light attenuation
case Discreet3DS::CHUNK_DL_ATTENUATE:
light->mAttenuationLinear = stream->GetF4();
break;
};
ASSIMP_3DS_END_CHUNK();
// recursively continue processing this hierarchy level
return ParseLightChunk();
}
// ------------------------------------------------------------------------------------------------
void Discreet3DSImporter::ParseCameraChunk()
{
ASSIMP_3DS_BEGIN_CHUNK();
aiCamera* camera = mScene->mCameras.back();
// get chunk type
switch (chunk.Flag)
{
// near and far clip plane
case Discreet3DS::CHUNK_CAM_RANGES:
camera->mClipPlaneNear = stream->GetF4();
camera->mClipPlaneFar = stream->GetF4();
break;
}
ASSIMP_3DS_END_CHUNK();
// recursively continue processing this hierarchy level
return ParseCameraChunk();
}
// ------------------------------------------------------------------------------------------------
void Discreet3DSImporter::ParseKeyframeChunk()
{
ASSIMP_3DS_BEGIN_CHUNK();
// get chunk type
switch (chunk.Flag)
{
case Discreet3DS::CHUNK_TRACKCAMTGT:
case Discreet3DS::CHUNK_SPOTLIGHT:
case Discreet3DS::CHUNK_TRACKCAMERA:
case Discreet3DS::CHUNK_TRACKINFO:
case Discreet3DS::CHUNK_TRACKLIGHT:
case Discreet3DS::CHUNK_TRACKLIGTGT:
// this starts a new mesh hierarchy chunk
ParseHierarchyChunk(chunk.Flag);
break;
};
ASSIMP_3DS_END_CHUNK();
// recursively continue processing this hierarchy level
return ParseKeyframeChunk();
}
// ------------------------------------------------------------------------------------------------
// Little helper function for ParseHierarchyChunk
void Discreet3DSImporter::InverseNodeSearch(D3DS::Node* pcNode,D3DS::Node* pcCurrent)
{
if (!pcCurrent)
{
mRootNode->push_back(pcNode);
return;
}
if (pcCurrent->mHierarchyPos == pcNode->mHierarchyPos)
{
if(pcCurrent->mParent)pcCurrent->mParent->push_back(pcNode);
else pcCurrent->push_back(pcNode);
return;
}
return InverseNodeSearch(pcNode,pcCurrent->mParent);
}
// ------------------------------------------------------------------------------------------------
D3DS::Node* FindNode(D3DS::Node* root, const std::string& name)
{
if (root->mName == name)return root;
for (std::vector<D3DS::Node*>::iterator it = root->mChildren.begin();
it != root->mChildren.end(); ++it)
{
D3DS::Node* nd;
if (( nd = FindNode(*it,name)))return nd;
}
return NULL;
}
// ------------------------------------------------------------------------------------------------
// Binary predicate for std::unique()
template <class T>
bool KeyUniqueCompare(const T& first, const T& second)
{
return first.mTime == second.mTime;
}
// ------------------------------------------------------------------------------------------------
void Discreet3DSImporter::SkipTCBInfo()
{
unsigned int flags = stream->GetI2();
if (!flags)
{
// ******************************************************************
// Currently we can't do anything with these values. They occur
// quite rare, so it wouldn't be worth the effort implementing
// them. 3DS ist not really suitable for complex animations,
// so full support is not required.
// ******************************************************************
DefaultLogger::get()->warn("3DS: Skipping TCB animation info");
}
if (flags & Discreet3DS::KEY_USE_TENS)
stream->IncPtr(4);
if (flags & Discreet3DS::KEY_USE_BIAS)
stream->IncPtr(4);
if (flags & Discreet3DS::KEY_USE_CONT)
stream->IncPtr(4);
if (flags & Discreet3DS::KEY_USE_EASE_FROM)
stream->IncPtr(4);
if (flags & Discreet3DS::KEY_USE_EASE_TO)
stream->IncPtr(4);
}
// ------------------------------------------------------------------------------------------------
void Discreet3DSImporter::ParseHierarchyChunk(uint16_t parent)
{
ASSIMP_3DS_BEGIN_CHUNK();
// get chunk type
switch (chunk.Flag)
{
case Discreet3DS::CHUNK_TRACKOBJNAME:
// This is the name of the object to which the track applies
// The chunk also defines the position of this object in the
// hierarchy.
{
// First of all: get the name of the object
unsigned int cnt = 0;
const char* sz = (const char*)stream->GetPtr();
while (stream->GetI1())++cnt;
std::string name = std::string(sz,cnt);
// Now find out whether we have this node already
// (target animation channels are stored with a
// separate object ID)
D3DS::Node* pcNode = FindNode(mRootNode,name);
if (pcNode)
{
// Make this node the current node
mCurrentNode = pcNode;
break;
}
pcNode = new D3DS::Node();
pcNode->mName = name;
// There are two unknown values which we can safely ignore
stream->IncPtr(4);
// Now read the hierarchy position of the object
uint16_t hierarchy = stream->GetI2() + 1;
pcNode->mHierarchyPos = hierarchy;
pcNode->mHierarchyIndex = mLastNodeIndex;
// And find a proper position in the graph for it
if (mCurrentNode && mCurrentNode->mHierarchyPos == hierarchy)
{
// add to the parent of the last touched node
mCurrentNode->mParent->push_back(pcNode);
mLastNodeIndex++;
}
else if(hierarchy >= mLastNodeIndex)
{
// place it at the current position in the hierarchy
mCurrentNode->push_back(pcNode);
mLastNodeIndex = hierarchy;
}
else
{
// need to go back to the specified position in the hierarchy.
InverseNodeSearch(pcNode,mCurrentNode);
mLastNodeIndex++;
}
// Make this node the current node
mCurrentNode = pcNode;
}
break;
case Discreet3DS::CHUNK_TRACKDUMMYOBJNAME:
// This is the "real" name of a $$$DUMMY object
{
if (mCurrentNode->mName != "$$$DUMMY")
{
DefaultLogger::get()->warn("3DS: Skipping dummy object name for non-dummy object");
break;
}
const char* sz = (const char*)stream->GetPtr();
while (stream->GetI1());
mCurrentNode->mDummyName = std::string(sz);
}
break;
case Discreet3DS::CHUNK_TRACKPIVOT:
if ( Discreet3DS::CHUNK_TRACKINFO != parent)
{
DefaultLogger::get()->warn("3DS: Skipping pivot subchunk for non usual object");
break;
}
// Pivot = origin of rotation and scaling
mCurrentNode->vPivot.x = stream->GetF4();
mCurrentNode->vPivot.y = stream->GetF4();
mCurrentNode->vPivot.z = stream->GetF4();
break;
// **************************************************************
// POSITION KEYFRAME
case Discreet3DS::CHUNK_TRACKPOS:
{
stream->IncPtr(10);
const unsigned int numFrames = stream->GetI4();
bool sortKeys = false;
// This could also be meant as the target position for
// (targeted) lights and cameras
std::vector<aiVectorKey>* l;
if ( Discreet3DS::CHUNK_TRACKCAMTGT == parent || Discreet3DS::CHUNK_TRACKLIGTGT == parent)
{
l = & mCurrentNode->aTargetPositionKeys;
}
else l = & mCurrentNode->aPositionKeys;
l->reserve(numFrames);
for (unsigned int i = 0; i < numFrames;++i)
{
const unsigned int fidx = stream->GetI4();
// Setup a new position key
aiVectorKey v;
v.mTime = (double)fidx;
SkipTCBInfo();
v.mValue.x = stream->GetF4();
v.mValue.y = stream->GetF4();
v.mValue.z = stream->GetF4();
// check whether we'll need to sort the keys
if (!l->empty() && v.mTime <= l->back().mTime)
sortKeys = true;
// Add the new keyframe to the list
l->push_back(v);
}
// Sort all keys with ascending time values and remove duplicates?
if (sortKeys)
{
std::stable_sort(l->begin(),l->end());
l->erase ( std::unique (l->begin(),l->end(),&KeyUniqueCompare<aiVectorKey>), l->end() );
}}
break;
// **************************************************************
// CAMERA ROLL KEYFRAME
case Discreet3DS::CHUNK_TRACKROLL:
{
// roll keys are accepted for cameras only
if (parent != Discreet3DS::CHUNK_TRACKCAMERA)
{
DefaultLogger::get()->warn("3DS: Ignoring roll track for non-camera object");
break;
}
bool sortKeys = false;
std::vector<aiFloatKey>* l = &mCurrentNode->aCameraRollKeys;
stream->IncPtr(10);
const unsigned int numFrames = stream->GetI4();
l->reserve(numFrames);
for (unsigned int i = 0; i < numFrames;++i)
{
const unsigned int fidx = stream->GetI4();
// Setup a new position key
aiFloatKey v;
v.mTime = (double)fidx;
// This is just a single float
SkipTCBInfo();
v.mValue = stream->GetF4();
// Check whether we'll need to sort the keys
if (!l->empty() && v.mTime <= l->back().mTime)
sortKeys = true;
// Add the new keyframe to the list
l->push_back(v);
}
// Sort all keys with ascending time values and remove duplicates?
if (sortKeys)
{
std::stable_sort(l->begin(),l->end());
l->erase ( std::unique (l->begin(),l->end(),&KeyUniqueCompare<aiFloatKey>), l->end() );
}}
break;
// **************************************************************
// CAMERA FOV KEYFRAME
case Discreet3DS::CHUNK_TRACKFOV:
{
DefaultLogger::get()->error("3DS: Skipping FOV animation track. "
"This is not supported");
}
break;
// **************************************************************
// ROTATION KEYFRAME
case Discreet3DS::CHUNK_TRACKROTATE:
{
stream->IncPtr(10);
const unsigned int numFrames = stream->GetI4();
bool sortKeys = false;
std::vector<aiQuatKey>* l = &mCurrentNode->aRotationKeys;
l->reserve(numFrames);
for (unsigned int i = 0; i < numFrames;++i)
{
const unsigned int fidx = stream->GetI4();
SkipTCBInfo();
aiQuatKey v;
v.mTime = (double)fidx;
// The rotation keyframe is given as an axis-angle pair
const float rad = stream->GetF4();
aiVector3D axis;
axis.x = stream->GetF4();
axis.y = stream->GetF4();
axis.z = stream->GetF4();
if (!axis.x && !axis.y && !axis.z)
axis.y = 1.f;
// Construct a rotation quaternion from the axis-angle pair
v.mValue = aiQuaternion(axis,rad);
// Check whether we'll need to sort the keys
if (!l->empty() && v.mTime <= l->back().mTime)
sortKeys = true;
// add the new keyframe to the list
l->push_back(v);
}
// Sort all keys with ascending time values and remove duplicates?
if (sortKeys)
{
std::stable_sort(l->begin(),l->end());
l->erase ( std::unique (l->begin(),l->end(),&KeyUniqueCompare<aiQuatKey>), l->end() );
}}
break;
// **************************************************************
// SCALING KEYFRAME
case Discreet3DS::CHUNK_TRACKSCALE:
{
stream->IncPtr(10);
const unsigned int numFrames = stream->GetI2();
stream->IncPtr(2);
bool sortKeys = false;
std::vector<aiVectorKey>* l = &mCurrentNode->aScalingKeys;
l->reserve(numFrames);
for (unsigned int i = 0; i < numFrames;++i)
{
const unsigned int fidx = stream->GetI4();
SkipTCBInfo();
// Setup a new key
aiVectorKey v;
v.mTime = (double)fidx;
// ... and read its value
v.mValue.x = stream->GetF4();
v.mValue.y = stream->GetF4();
v.mValue.z = stream->GetF4();
// check whether we'll need to sort the keys
if (!l->empty() && v.mTime <= l->back().mTime)
sortKeys = true;
// Remove zero-scalings
if (!v.mValue.x)v.mValue.x = 1.f;
if (!v.mValue.y)v.mValue.y = 1.f;
if (!v.mValue.z)v.mValue.z = 1.f;
l->push_back(v);
}
// Sort all keys with ascending time values and remove duplicates?
if (sortKeys)
{
std::stable_sort(l->begin(),l->end());
l->erase ( std::unique (l->begin(),l->end(),&KeyUniqueCompare<aiVectorKey>), l->end() );
}}
break;
};
ASSIMP_3DS_END_CHUNK();
// recursively continue processing this hierarchy level
return ParseHierarchyChunk(parent);
}
// ------------------------------------------------------------------------------------------------
void Discreet3DSImporter::ParseFaceChunk()
{
ASSIMP_3DS_BEGIN_CHUNK();
// Get the mesh we're currently working on
D3DS::Mesh& mMesh = mScene->mMeshes.back();
// Get chunk type
switch (chunk.Flag)
{
case Discreet3DS::CHUNK_SMOOLIST:
{
// This is the list of smoothing groups - a bitfield for
// every frame. Up to 32 smoothing groups assigned to a
// face.
unsigned int num = chunkSize/4, m = 0;
for (std::vector<D3DS::Face>::iterator i = mMesh.mFaces.begin();
m != num;++i, ++m)
{
// nth bit is set for nth smoothing group
(*i).iSmoothGroup = stream->GetI4();
}}
break;
case Discreet3DS::CHUNK_FACEMAT:
{
// at fist an asciiz with the material name
const char* sz = (const char*)stream->GetPtr();
while (stream->GetI1());
// find the index of the material
unsigned int idx = 0xcdcdcdcd, cnt = 0;
for (std::vector<D3DS::Material>::const_iterator
i = mScene->mMaterials.begin();
i != mScene->mMaterials.end();++i,++cnt)
{
// compare case-independent to be sure it works
if ((*i).mName.length() && !ASSIMP_stricmp(sz, (*i).mName.c_str()))
{
idx = cnt;
break;
}
}
if (0xcdcdcdcd == idx)
{
DefaultLogger::get()->error(std::string("3DS: Unknown material: ") + sz);
// ******************************************************************
// This material is not known. Ignore this. We will later
// assign the default material to all faces using *this*
// material. We use 0xcdcdcdcd as special value to indicate this.
// ******************************************************************
}
// Now continue and read all material indices
cnt = (uint16_t)stream->GetI2();
for (unsigned int i = 0; i < cnt;++i)
{
unsigned int fidx = (uint16_t)stream->GetI2();
// check range
if (fidx >= mMesh.mFaceMaterials.size())
{
DefaultLogger::get()->error("3DS: Invalid face index in face material list");
}
else mMesh.mFaceMaterials[fidx] = idx;
}}
break;
};
ASSIMP_3DS_END_CHUNK();
// recursively continue processing this hierarchy level
return ParseFaceChunk();
}
// ------------------------------------------------------------------------------------------------
void Discreet3DSImporter::ParseMeshChunk()
{
ASSIMP_3DS_BEGIN_CHUNK();
// Get the mesh we're currently working on
D3DS::Mesh& mMesh = mScene->mMeshes.back();
// get chunk type
switch (chunk.Flag)
{
case Discreet3DS::CHUNK_VERTLIST:
{
// This is the list of all vertices in the current mesh
int num = (int)(uint16_t)stream->GetI2();
mMesh.mPositions.reserve(num);
while (num-- > 0)
{
aiVector3D v;
v.x = stream->GetF4();
v.y = stream->GetF4();
v.z = stream->GetF4();
mMesh.mPositions.push_back(v);
}}
break;
case Discreet3DS::CHUNK_TRMATRIX:
{
// This is the RLEATIVE transformation matrix of the
// current mesh. However, all vertices are pretransformed
mMesh.mMat.a1 = stream->GetF4();
mMesh.mMat.b1 = stream->GetF4();
mMesh.mMat.c1 = stream->GetF4();
mMesh.mMat.a2 = stream->GetF4();
mMesh.mMat.b2 = stream->GetF4();
mMesh.mMat.c2 = stream->GetF4();
mMesh.mMat.a3 = stream->GetF4();
mMesh.mMat.b3 = stream->GetF4();
mMesh.mMat.c3 = stream->GetF4();
mMesh.mMat.a4 = stream->GetF4();
mMesh.mMat.b4 = stream->GetF4();
mMesh.mMat.c4 = stream->GetF4();
// Now check whether the matrix has got a negative determinant
// If yes, we need to flip all vertices' Z axis ....
// This code has been taken from lib3ds
if (mMesh.mMat.Determinant() < 0.0f)
{
// Compute the inverse of the matrix
aiMatrix4x4 mInv = mMesh.mMat;
mInv.Inverse();
aiMatrix4x4 mMe = mMesh.mMat;
mMe.c1 *= -1.0f;
mMe.c2 *= -1.0f;
mMe.c3 *= -1.0f;
mMe.c4 *= -1.0f;
mInv = mInv * mMe;
// Now transform all vertices
for (unsigned int i = 0; i < (unsigned int)mMesh.mPositions.size();++i)
{
aiVector3D a,c;
a = mMesh.mPositions[i];
c[0]= mInv[0][0]*a[0] + mInv[1][0]*a[1] + mInv[2][0]*a[2] + mInv[3][0];
c[1]= mInv[0][1]*a[0] + mInv[1][1]*a[1] + mInv[2][1]*a[2] + mInv[3][1];
c[2]= mInv[0][2]*a[0] + mInv[1][2]*a[1] + mInv[2][2]*a[2] + mInv[3][2];
mMesh.mPositions[i] = c;
}
DefaultLogger::get()->info("3DS: Flipping mesh Z-Axis");
}}
break;
case Discreet3DS::CHUNK_MAPLIST:
{
// This is the list of all UV coords in the current mesh
int num = (int)(uint16_t)stream->GetI2();
mMesh.mTexCoords.reserve(num);
while (num-- > 0)
{
aiVector3D v;
v.x = stream->GetF4();
v.y = stream->GetF4();
mMesh.mTexCoords.push_back(v);
}}
break;
case Discreet3DS::CHUNK_FACELIST:
{
// This is the list of all faces in the current mesh
int num = (int)(uint16_t)stream->GetI2();
mMesh.mFaces.reserve(num);
while (num-- > 0)
{
// 3DS faces are ALWAYS triangles
mMesh.mFaces.push_back(D3DS::Face());
D3DS::Face& sFace = mMesh.mFaces.back();
sFace.mIndices[0] = (uint16_t)stream->GetI2();
sFace.mIndices[1] = (uint16_t)stream->GetI2();
sFace.mIndices[2] = (uint16_t)stream->GetI2();
stream->IncPtr(2); // skip edge visibility flag
}
// Resize the material array (0xcdcdcdcd marks the
// default material; so if a face is not referenced
// by a material $$DEFAULT will be assigned to it)
mMesh.mFaceMaterials.resize(mMesh.mFaces.size(),0xcdcdcdcd);
// Larger 3DS files could have multiple FACE chunks here
chunkSize = stream->GetRemainingSizeToLimit();
if (chunkSize > sizeof(Discreet3DS::Chunk))
ParseFaceChunk();
}
break;
};
ASSIMP_3DS_END_CHUNK();
// recursively continue processing this hierarchy level
return ParseMeshChunk();
}
// ------------------------------------------------------------------------------------------------
void Discreet3DSImporter::ParseMaterialChunk()
{
ASSIMP_3DS_BEGIN_CHUNK();
// get chunk type
switch (chunk.Flag)
{
case Discreet3DS::CHUNK_MAT_MATNAME:
{
// The material name string is already zero-terminated, but
// we need to be sure ...
const char* sz = (const char*)stream->GetPtr();
unsigned int cnt = 0;
while (stream->GetI1())++cnt;
if (!cnt)
{
// This may not be, we use the default name instead
DefaultLogger::get()->error("3DS: Empty material name");
}
else mScene->mMaterials.back().mName = std::string(sz,cnt);
}
break;
case Discreet3DS::CHUNK_MAT_DIFFUSE:
{
// This is the diffuse material color
aiColor3D* pc = &mScene->mMaterials.back().mDiffuse;
ParseColorChunk(pc);
if (is_qnan(pc->r))
{
// color chunk is invalid. Simply ignore it
DefaultLogger::get()->error("3DS: Unable to read DIFFUSE chunk");
pc->r = pc->g = pc->b = 1.0f;
}}
break;
case Discreet3DS::CHUNK_MAT_SPECULAR:
{
// This is the specular material color
aiColor3D* pc = &mScene->mMaterials.back().mSpecular;
ParseColorChunk(pc);
if (is_qnan(pc->r))
{
// color chunk is invalid. Simply ignore it
DefaultLogger::get()->error("3DS: Unable to read SPECULAR chunk");
pc->r = pc->g = pc->b = 1.0f;
}}
break;
case Discreet3DS::CHUNK_MAT_AMBIENT:
{
// This is the ambient material color
aiColor3D* pc = &mScene->mMaterials.back().mAmbient;
ParseColorChunk(pc);
if (is_qnan(pc->r))
{
// color chunk is invalid. Simply ignore it
DefaultLogger::get()->error("3DS: Unable to read AMBIENT chunk");
pc->r = pc->g = pc->b = 0.0f;
}}
break;
case Discreet3DS::CHUNK_MAT_SELF_ILLUM:
{
// This is the emissive material color
aiColor3D* pc = &mScene->mMaterials.back().mEmissive;
ParseColorChunk(pc);
if (is_qnan(pc->r))
{
// color chunk is invalid. Simply ignore it
DefaultLogger::get()->error("3DS: Unable to read EMISSIVE chunk");
pc->r = pc->g = pc->b = 0.0f;
}}
break;
case Discreet3DS::CHUNK_MAT_TRANSPARENCY:
{
// This is the material's transparency
float* pcf = &mScene->mMaterials.back().mTransparency;
*pcf = ParsePercentageChunk();
// NOTE: transparency, not opacity
if (is_qnan(*pcf))*pcf = 1.0f;
else *pcf = 1.0f - *pcf * (float)0xFFFF / 100.0f;
}
break;
case Discreet3DS::CHUNK_MAT_SHADING:
// This is the material shading mode
mScene->mMaterials.back().mShading = (D3DS::Discreet3DS::shadetype3ds)stream->GetI2();
break;
case Discreet3DS::CHUNK_MAT_TWO_SIDE:
// This is the two-sided flag
mScene->mMaterials.back().mTwoSided = true;
break;
case Discreet3DS::CHUNK_MAT_SHININESS:
{ // This is the shininess of the material
float* pcf = &mScene->mMaterials.back().mSpecularExponent;
*pcf = ParsePercentageChunk();
if (is_qnan(*pcf))*pcf = 0.0f;
else *pcf *= (float)0xFFFF;
}
break;
case Discreet3DS::CHUNK_MAT_SHININESS_PERCENT:
{ // This is the shininess strength of the material
float* pcf = &mScene->mMaterials.back().mShininessStrength;
*pcf = ParsePercentageChunk();
if (is_qnan(*pcf))*pcf = 0.0f;
else *pcf *= (float)0xffff / 100.0f;
}
break;
case Discreet3DS::CHUNK_MAT_SELF_ILPCT:
{ // This is the self illumination strength of the material
float f = ParsePercentageChunk();
if (is_qnan(f))f = 0.0f;
else f *= (float)0xFFFF / 100.0f;
mScene->mMaterials.back().mEmissive = aiColor3D(f,f,f);
}
break;
// Parse texture chunks
case Discreet3DS::CHUNK_MAT_TEXTURE:
// Diffuse texture
ParseTextureChunk(&mScene->mMaterials.back().sTexDiffuse);
break;
case Discreet3DS::CHUNK_MAT_BUMPMAP:
// Height map
ParseTextureChunk(&mScene->mMaterials.back().sTexBump);
break;
case Discreet3DS::CHUNK_MAT_OPACMAP:
// Opacity texture
ParseTextureChunk(&mScene->mMaterials.back().sTexOpacity);
break;
case Discreet3DS::CHUNK_MAT_MAT_SHINMAP:
// Shininess map
ParseTextureChunk(&mScene->mMaterials.back().sTexShininess);
break;
case Discreet3DS::CHUNK_MAT_SPECMAP:
// Specular map
ParseTextureChunk(&mScene->mMaterials.back().sTexSpecular);
break;
case Discreet3DS::CHUNK_MAT_SELFIMAP:
// Self-illumination (emissive) map
ParseTextureChunk(&mScene->mMaterials.back().sTexEmissive);
break;
case Discreet3DS::CHUNK_MAT_REFLMAP:
// Reflection map - no support in Assimp
DefaultLogger::get()->warn("3DS: Found reflection map in file. This is not supported");
break;
};
ASSIMP_3DS_END_CHUNK();
// recursively continue processing this hierarchy level
return ParseMaterialChunk();
}
// ------------------------------------------------------------------------------------------------
void Discreet3DSImporter::ParseTextureChunk(D3DS::Texture* pcOut)
{
ASSIMP_3DS_BEGIN_CHUNK();
// get chunk type
switch (chunk.Flag)
{
case Discreet3DS::CHUNK_MAPFILE:
{
// The material name string is already zero-terminated, but
// we need to be sure ...
const char* sz = (const char*)stream->GetPtr();
unsigned int cnt = 0;
while (stream->GetI1())++cnt;
pcOut->mMapName = std::string(sz,cnt);
}
break;
case Discreet3DS::CHUNK_PERCENTF:
// Manually parse the blend factor
pcOut->mTextureBlend = stream->GetF4();
break;
case Discreet3DS::CHUNK_PERCENTW:
// Manually parse the blend factor
pcOut->mTextureBlend = (float)((uint16_t)stream->GetI2()) / 100.0f;
break;
case Discreet3DS::CHUNK_MAT_MAP_USCALE:
// Texture coordinate scaling in the U direction
pcOut->mScaleU = stream->GetF4();
if (0.0f == pcOut->mScaleU)
{
DefaultLogger::get()->warn("Texture coordinate scaling in the "
"x direction is zero. Assuming 1");
pcOut->mScaleU = 1.0f;
}
break;
case Discreet3DS::CHUNK_MAT_MAP_VSCALE:
// Texture coordinate scaling in the V direction
pcOut->mScaleV = stream->GetF4();
if (0.0f == pcOut->mScaleV)
{
DefaultLogger::get()->warn("Texture coordinate scaling in the "
"y direction is zero. Assuming 1");
pcOut->mScaleV = 1.0f;
}
break;
case Discreet3DS::CHUNK_MAT_MAP_UOFFSET:
// Texture coordinate offset in the U direction
pcOut->mOffsetU = -stream->GetF4();
break;
case Discreet3DS::CHUNK_MAT_MAP_VOFFSET:
// Texture coordinate offset in the V direction
pcOut->mOffsetV = stream->GetF4();
break;
case Discreet3DS::CHUNK_MAT_MAP_ANG:
// Texture coordinate rotation, CCW in DEGREES
pcOut->mRotation = -AI_DEG_TO_RAD( stream->GetF4() );
break;
case Discreet3DS::CHUNK_MAT_MAP_TILING:
{
const uint16_t iFlags = stream->GetI2();
// Get the mapping mode (for both axes)
if (iFlags & 0x2u)
pcOut->mMapMode = aiTextureMapMode_Mirror;
else if (iFlags & 0x10u)
pcOut->mMapMode = aiTextureMapMode_Decal;
// wrapping in all remaining cases
else pcOut->mMapMode = aiTextureMapMode_Wrap;
}
break;
};
ASSIMP_3DS_END_CHUNK();
// recursively continue processing this hierarchy level
return ParseTextureChunk(pcOut);
}
// ------------------------------------------------------------------------------------------------
// Read a percentage chunk
float Discreet3DSImporter::ParsePercentageChunk()
{
Discreet3DS::Chunk chunk;
ReadChunk(&chunk);
if (Discreet3DS::CHUNK_PERCENTF == chunk.Flag)
return stream->GetF4();
else if (Discreet3DS::CHUNK_PERCENTW == chunk.Flag)
return (float)((uint16_t)stream->GetI2()) / (float)0xFFFF;
return std::numeric_limits<float>::quiet_NaN();
}
// ------------------------------------------------------------------------------------------------
// Read a color chunk. If a percentage chunk is found instead it is read as a grayscale color
void Discreet3DSImporter::ParseColorChunk(aiColor3D* out,
bool acceptPercent)
{
ai_assert(out != NULL);
// error return value
const float qnan = std::numeric_limits<float>::quiet_NaN();
static const aiColor3D clrError = aiColor3D(qnan,qnan,qnan);
Discreet3DS::Chunk chunk;
ReadChunk(&chunk);
const unsigned int diff = chunk.Size - sizeof(Discreet3DS::Chunk);
bool bGamma = false;
// Get the type of the chunk
switch(chunk.Flag)
{
case Discreet3DS::CHUNK_LINRGBF:
bGamma = true;
case Discreet3DS::CHUNK_RGBF:
if (sizeof(float) * 3 > diff)
{
*out = clrError;
return;
}
out->r = stream->GetF4();
out->g = stream->GetF4();
out->b = stream->GetF4();
break;
case Discreet3DS::CHUNK_LINRGBB:
bGamma = true;
case Discreet3DS::CHUNK_RGBB:
if (sizeof(char) * 3 > diff)
{
*out = clrError;
return;
}
out->r = (float)(uint8_t)stream->GetI1() / 255.0f;
out->g = (float)(uint8_t)stream->GetI1() / 255.0f;
out->b = (float)(uint8_t)stream->GetI1() / 255.0f;
break;
// Percentage chunks are accepted, too.
case Discreet3DS::CHUNK_PERCENTF:
if (acceptPercent && 4 <= diff)
{
out->g = out->b = out->r = stream->GetF4();
break;
}
*out = clrError;
return;
case Discreet3DS::CHUNK_PERCENTW:
if (acceptPercent && 1 <= diff)
{
out->g = out->b = out->r = (float)(uint8_t)stream->GetI1() / 255.0f;
break;
}
*out = clrError;
return;
default:
stream->IncPtr(diff);
// Skip unknown chunks, hope this won't cause any problems.
return ParseColorChunk(out,acceptPercent);
};
}