assimp/code/3DSSpatialSort.cpp

149 lines
5.4 KiB
C++
Raw Normal View History

/** @file Implementation of the helper class to quickly find vertices close to a given position */
#include <algorithm>
#include "3DSSpatialSort.h"
using namespace Assimp;
using namespace Assimp::Dot3DS;
// ------------------------------------------------------------------------------------------------
// Constructs a spatially sorted representation from the given position array.
D3DSSpatialSorter::D3DSSpatialSorter( const aiVector3D* pPositions,
unsigned int pNumPositions, unsigned int pElementOffset)
{
// define the reference plane. We choose some arbitrary vector away from all basic axises
// in the hope that no model spreads all its vertices along this plane.
mPlaneNormal.Set( 0.8523f, 0.34321f, 0.5736f);
mPlaneNormal.Normalize();
// store references to all given positions along with their distance to the reference plane
mPositions.reserve( pNumPositions);
for( unsigned int a = 0; a < pNumPositions; a++)
{
const char* tempPointer = reinterpret_cast<const char*> (pPositions);
const aiVector3D* vec = reinterpret_cast<const aiVector3D*> (tempPointer + a * pElementOffset);
// store position by index and distance
float distance = *vec * mPlaneNormal;
mPositions.push_back( Entry( a, *vec, distance,0));
}
// now sort the array ascending by distance.
std::sort( mPositions.begin(), mPositions.end());
}
// ------------------------------------------------------------------------------------------------
D3DSSpatialSorter::D3DSSpatialSorter( const Dot3DS::Mesh* p_pcMesh)
{
// define the reference plane. We choose some arbitrary vector away from all basic axises
// in the hope that no model spreads all its vertices along this plane.
mPlaneNormal.Set( 0.8523f, 0.34321f, 0.5736f);
mPlaneNormal.Normalize();
// store references to all given positions along with their distance to the reference plane
mPositions.reserve( p_pcMesh->mPositions.size());
for( std::vector<Dot3DS::Face>::const_iterator
i = p_pcMesh->mFaces.begin();
i != p_pcMesh->mFaces.end();++i)
{
// store position by index and distance
float distance = p_pcMesh->mPositions[(*i).i1] * mPlaneNormal;
mPositions.push_back( Entry( (*i).i1, p_pcMesh->mPositions[(*i).i1],
distance, (*i).iSmoothGroup));
// triangle vertex 2
distance = p_pcMesh->mPositions[(*i).i2] * mPlaneNormal;
mPositions.push_back( Entry( (*i).i2, p_pcMesh->mPositions[(*i).i2],
distance, (*i).iSmoothGroup));
// triangle vertex 3
distance = p_pcMesh->mPositions[(*i).i3] * mPlaneNormal;
mPositions.push_back( Entry( (*i).i3, p_pcMesh->mPositions[(*i).i3],
distance, (*i).iSmoothGroup));
}
// now sort the array ascending by distance.
std::sort( this->mPositions.begin(), this->mPositions.end());
}
// ------------------------------------------------------------------------------------------------
// Destructor
D3DSSpatialSorter::~D3DSSpatialSorter()
{
// nothing to do here, everything destructs automatically
}
// ------------------------------------------------------------------------------------------------
// Returns an iterator for all positions close to the given position.
void D3DSSpatialSorter::FindPositions( const aiVector3D& pPosition,
uint32_t pSG,float pRadius, std::vector<unsigned int>& poResults) const
{
float dist = pPosition * mPlaneNormal;
float minDist = dist - pRadius, maxDist = dist + pRadius;
// clear the array in this strange fashion because a simple clear() would also deallocate
// the array which we want to avoid
poResults.erase( poResults.begin(), poResults.end());
// quick check for positions outside the range
if( mPositions.size() == 0)
return;
if( maxDist < mPositions.front().mDistance)
return;
if( minDist > mPositions.back().mDistance)
return;
// do a binary search for the minimal distance to start the iteration there
unsigned int index = mPositions.size() / 2;
unsigned int binaryStepSize = mPositions.size() / 4;
while( binaryStepSize > 1)
{
if( mPositions[index].mDistance < minDist)
index += binaryStepSize;
else
index -= binaryStepSize;
binaryStepSize /= 2;
}
// depending on the direction of the last step we need to single step a bit back or forth
// to find the actual beginning element of the range
while( index > 0 && mPositions[index].mDistance > minDist)
index--;
while( index < (mPositions.size() - 1) && mPositions[index].mDistance < minDist)
index++;
// Mow start iterating from there until the first position lays outside of the distance range.
// Add all positions inside the distance range within the given radius to the result aray
if (0 == pSG)
{
std::vector<Entry>::const_iterator it = mPositions.begin() + index;
float squareEpsilon = pRadius * pRadius;
while( it->mDistance < maxDist)
{
if((it->mPosition - pPosition).SquareLength() < squareEpsilon)
{
poResults.push_back( it->mIndex);
}
++it;
if( it == mPositions.end())
break;
}
}
else
{
std::vector<Entry>::const_iterator it = mPositions.begin() + index;
float squareEpsilon = pRadius * pRadius;
while( it->mDistance < maxDist)
{
if((it->mPosition - pPosition).SquareLength() < squareEpsilon &&
(it->mSmoothGroups & pSG || 0 == it->mSmoothGroups))
{
poResults.push_back( it->mIndex);
}
++it;
if( it == mPositions.end())
break;
}
}
}