assimp/contrib/draco/src/draco/point_cloud/point_cloud.cc

311 lines
10 KiB
C++
Raw Normal View History

// Copyright 2016 The Draco Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
#include "draco/point_cloud/point_cloud.h"
#include <algorithm>
#include <unordered_map>
#include <utility>
#ifdef DRACO_TRANSCODER_SUPPORTED
#include "draco/attributes/point_attribute.h"
#endif
namespace draco {
PointCloud::PointCloud() : num_points_(0) {}
#ifdef DRACO_TRANSCODER_SUPPORTED
void PointCloud::Copy(const PointCloud &src) {
num_points_ = src.num_points_;
for (int i = 0; i < GeometryAttribute::NAMED_ATTRIBUTES_COUNT; ++i) {
named_attribute_index_[i] = src.named_attribute_index_[i];
}
attributes_.resize(src.attributes_.size());
for (int i = 0; i < src.attributes_.size(); ++i) {
attributes_[i] = std::unique_ptr<PointAttribute>(new PointAttribute());
attributes_[i]->CopyFrom(*src.attributes_[i]);
}
CopyMetadata(src);
}
void PointCloud::CopyMetadata(const PointCloud &src) {
if (src.metadata_ == nullptr) {
metadata_ = nullptr;
} else {
// Copy base metadata.
const GeometryMetadata *const metadata = src.metadata_.get();
metadata_.reset(new GeometryMetadata(*metadata));
}
}
#endif
int32_t PointCloud::NumNamedAttributes(GeometryAttribute::Type type) const {
if (type == GeometryAttribute::INVALID ||
type >= GeometryAttribute::NAMED_ATTRIBUTES_COUNT) {
return 0;
}
return static_cast<int32_t>(named_attribute_index_[type].size());
}
int32_t PointCloud::GetNamedAttributeId(GeometryAttribute::Type type) const {
return GetNamedAttributeId(type, 0);
}
int32_t PointCloud::GetNamedAttributeId(GeometryAttribute::Type type,
int i) const {
if (NumNamedAttributes(type) <= i) {
return -1;
}
return named_attribute_index_[type][i];
}
const PointAttribute *PointCloud::GetNamedAttribute(
GeometryAttribute::Type type) const {
return GetNamedAttribute(type, 0);
}
const PointAttribute *PointCloud::GetNamedAttribute(
GeometryAttribute::Type type, int i) const {
const int32_t att_id = GetNamedAttributeId(type, i);
if (att_id == -1) {
return nullptr;
}
return attributes_[att_id].get();
}
const PointAttribute *PointCloud::GetNamedAttributeByUniqueId(
GeometryAttribute::Type type, uint32_t unique_id) const {
for (size_t att_id = 0; att_id < named_attribute_index_[type].size();
++att_id) {
if (attributes_[named_attribute_index_[type][att_id]]->unique_id() ==
unique_id) {
return attributes_[named_attribute_index_[type][att_id]].get();
}
}
return nullptr;
}
const PointAttribute *PointCloud::GetAttributeByUniqueId(
uint32_t unique_id) const {
const int32_t att_id = GetAttributeIdByUniqueId(unique_id);
if (att_id == -1) {
return nullptr;
}
return attributes_[att_id].get();
}
int32_t PointCloud::GetAttributeIdByUniqueId(uint32_t unique_id) const {
for (size_t att_id = 0; att_id < attributes_.size(); ++att_id) {
if (attributes_[att_id]->unique_id() == unique_id) {
return static_cast<int32_t>(att_id);
}
}
return -1;
}
int PointCloud::AddAttribute(std::unique_ptr<PointAttribute> pa) {
SetAttribute(static_cast<int>(attributes_.size()), std::move(pa));
return static_cast<int>(attributes_.size() - 1);
}
int PointCloud::AddAttribute(
const GeometryAttribute &att, bool identity_mapping,
AttributeValueIndex::ValueType num_attribute_values) {
auto pa = CreateAttribute(att, identity_mapping, num_attribute_values);
if (!pa) {
return -1;
}
const int32_t att_id = AddAttribute(std::move(pa));
return att_id;
}
std::unique_ptr<PointAttribute> PointCloud::CreateAttribute(
const GeometryAttribute &att, bool identity_mapping,
AttributeValueIndex::ValueType num_attribute_values) const {
if (att.attribute_type() == GeometryAttribute::INVALID) {
return nullptr;
}
std::unique_ptr<PointAttribute> pa =
std::unique_ptr<PointAttribute>(new PointAttribute(att));
// Initialize point cloud specific attribute data.
if (!identity_mapping) {
// First create mapping between indices.
pa->SetExplicitMapping(num_points_);
} else {
pa->SetIdentityMapping();
num_attribute_values = std::max(num_points_, num_attribute_values);
}
if (num_attribute_values > 0) {
pa->Reset(num_attribute_values);
}
return pa;
}
void PointCloud::SetAttribute(int att_id, std::unique_ptr<PointAttribute> pa) {
DRACO_DCHECK(att_id >= 0);
if (static_cast<int>(attributes_.size()) <= att_id) {
attributes_.resize(att_id + 1);
}
if (pa->attribute_type() < GeometryAttribute::NAMED_ATTRIBUTES_COUNT) {
named_attribute_index_[pa->attribute_type()].push_back(att_id);
}
pa->set_unique_id(att_id);
attributes_[att_id] = std::move(pa);
}
void PointCloud::DeleteAttribute(int att_id) {
if (att_id < 0 || att_id >= attributes_.size()) {
return; // Attribute does not exist.
}
const GeometryAttribute::Type att_type =
attributes_[att_id]->attribute_type();
const uint32_t unique_id = attribute(att_id)->unique_id();
attributes_.erase(attributes_.begin() + att_id);
// Remove metadata if applicable.
if (metadata_) {
metadata_->DeleteAttributeMetadataByUniqueId(unique_id);
}
// Remove the attribute from the named attribute list if applicable.
if (att_type < GeometryAttribute::NAMED_ATTRIBUTES_COUNT) {
const auto it = std::find(named_attribute_index_[att_type].begin(),
named_attribute_index_[att_type].end(), att_id);
if (it != named_attribute_index_[att_type].end()) {
named_attribute_index_[att_type].erase(it);
}
}
// Update ids of all subsequent named attributes (decrease them by one).
for (int i = 0; i < GeometryAttribute::NAMED_ATTRIBUTES_COUNT; ++i) {
for (int j = 0; j < named_attribute_index_[i].size(); ++j) {
if (named_attribute_index_[i][j] > att_id) {
named_attribute_index_[i][j]--;
}
}
}
}
#ifdef DRACO_ATTRIBUTE_INDICES_DEDUPLICATION_SUPPORTED
void PointCloud::DeduplicatePointIds() {
// Hashing function for a single vertex.
auto point_hash = [this](PointIndex p) {
PointIndex::ValueType hash = 0;
for (int32_t i = 0; i < this->num_attributes(); ++i) {
const AttributeValueIndex att_id = attribute(i)->mapped_index(p);
hash = static_cast<uint32_t>(HashCombine(att_id.value(), hash));
}
return hash;
};
// Comparison function between two vertices.
auto point_compare = [this](PointIndex p0, PointIndex p1) {
for (int32_t i = 0; i < this->num_attributes(); ++i) {
const AttributeValueIndex att_id0 = attribute(i)->mapped_index(p0);
const AttributeValueIndex att_id1 = attribute(i)->mapped_index(p1);
if (att_id0 != att_id1) {
return false;
}
}
return true;
};
std::unordered_map<PointIndex, PointIndex, decltype(point_hash),
decltype(point_compare)>
unique_point_map(num_points_, point_hash, point_compare);
int32_t num_unique_points = 0;
IndexTypeVector<PointIndex, PointIndex> index_map(num_points_);
std::vector<PointIndex> unique_points;
// Go through all vertices and find their duplicates.
for (PointIndex i(0); i < num_points_; ++i) {
const auto it = unique_point_map.find(i);
if (it != unique_point_map.end()) {
index_map[i] = it->second;
} else {
unique_point_map.insert(std::make_pair(i, PointIndex(num_unique_points)));
index_map[i] = num_unique_points++;
unique_points.push_back(i);
}
}
if (num_unique_points == num_points_) {
return; // All vertices are already unique.
}
ApplyPointIdDeduplication(index_map, unique_points);
set_num_points(num_unique_points);
}
void PointCloud::ApplyPointIdDeduplication(
const IndexTypeVector<PointIndex, PointIndex> &id_map,
const std::vector<PointIndex> &unique_point_ids) {
int32_t num_unique_points = 0;
for (PointIndex i : unique_point_ids) {
const PointIndex new_point_id = id_map[i];
if (new_point_id >= num_unique_points) {
// New unique vertex reached. Copy attribute indices to the proper
// position.
for (int32_t a = 0; a < num_attributes(); ++a) {
attribute(a)->SetPointMapEntry(new_point_id,
attribute(a)->mapped_index(i));
}
num_unique_points = new_point_id.value() + 1;
}
}
for (int32_t a = 0; a < num_attributes(); ++a) {
attribute(a)->SetExplicitMapping(num_unique_points);
}
}
#endif
#ifdef DRACO_ATTRIBUTE_VALUES_DEDUPLICATION_SUPPORTED
bool PointCloud::DeduplicateAttributeValues() {
// Go over all attributes and create mapping between duplicate entries.
if (num_points() == 0) {
return true; // Nothing to deduplicate.
}
// Deduplicate all attributes.
for (int32_t att_id = 0; att_id < num_attributes(); ++att_id) {
if (!attribute(att_id)->DeduplicateValues(*attribute(att_id))) {
return false;
}
}
return true;
}
#endif
// TODO(b/199760503): Consider to cache the BBox.
BoundingBox PointCloud::ComputeBoundingBox() const {
BoundingBox bounding_box;
auto pc_att = GetNamedAttribute(GeometryAttribute::POSITION);
if (pc_att == nullptr) {
// Return default invalid bounding box.
return bounding_box;
}
// TODO(b/199760503): Make the BoundingBox a template type, it may not be easy
// because PointCloud is not a template.
// Or simply add some preconditioning here to make sure the position attribute
// is valid, because the current code works only if the position attribute is
// defined with 3 components of DT_FLOAT32.
// Consider using pc_att->ConvertValue<float, 3>(i, &p[0]) (Enforced
// transformation from Vector with any dimension to Vector3f)
Vector3f p;
for (AttributeValueIndex i(0); i < static_cast<uint32_t>(pc_att->size());
++i) {
pc_att->GetValue(i, &p[0]);
bounding_box.Update(p);
}
return bounding_box;
}
} // namespace draco