assimp/code/MD2Loader.cpp

310 lines
11 KiB
C++
Raw Normal View History

/** @file Implementation of the MD2 importer class */
#include "MD2Loader.h"
#include "MaterialSystem.h"
#include "MD2NormalTable.h"
#include "../include/IOStream.h"
#include "../include/IOSystem.h"
#include "../include/aiMesh.h"
#include "../include/aiScene.h"
#include "../include/aiAssert.h"
#include <boost/scoped_ptr.hpp>
using namespace Assimp;
// ------------------------------------------------------------------------------------------------
inline bool is_qnan(float p_fIn)
{
// NOTE: Comparison against qnan is generally problematic
// because qnan == qnan is false AFAIK
union FTOINT
{
float fFloat;
int32_t iInt;
} one, two;
one.fFloat = std::numeric_limits<float>::quiet_NaN();
two.fFloat = p_fIn;
return (one.iInt == two.iInt);
}
// ------------------------------------------------------------------------------------------------
inline bool is_not_qnan(float p_fIn)
{
return !is_qnan(p_fIn);
}
// ------------------------------------------------------------------------------------------------
// Constructor to be privately used by Importer
MD2Importer::MD2Importer()
{
}
// ------------------------------------------------------------------------------------------------
// Destructor, private as well
MD2Importer::~MD2Importer()
{
}
// ------------------------------------------------------------------------------------------------
// Returns whether the class can handle the format of the given file.
bool MD2Importer::CanRead( const std::string& pFile, IOSystem* pIOHandler) const
{
// simple check of file extension is enough for the moment
std::string::size_type pos = pFile.find_last_of('.');
// no file extension - can't read
if( pos == std::string::npos)
return false;
std::string extension = pFile.substr( pos);
// not brilliant but working ;-)
if( extension == ".md2" || extension == ".MD2" ||
extension == ".mD2" || extension == ".Md2")
return true;
return false;
}
// ------------------------------------------------------------------------------------------------
// Imports the given file into the given scene structure.
void MD2Importer::InternReadFile(
const std::string& pFile, aiScene* pScene, IOSystem* pIOHandler)
{
boost::scoped_ptr<IOStream> file( pIOHandler->Open( pFile));
// Check whether we can read from the file
if( file.get() == NULL)
{
throw new ImportErrorException( "Failed to open md2 file " + pFile + ".");
}
// check whether the md3 file is large enough to contain
// at least the file header
size_t fileSize = file->FileSize();
if( fileSize < sizeof(MD2::Header))
{
throw new ImportErrorException( ".md2 File is too small.");
}
// allocate storage and copy the contents of the file to a memory buffer
this->mBuffer = new unsigned char[fileSize];
file->Read( (void*)mBuffer, 1, fileSize);
this->m_pcHeader = (const MD2::Header*)this->mBuffer;
// check magic number
if (this->m_pcHeader->magic != AI_MD2_MAGIC_NUMBER_BE &&
this->m_pcHeader->magic != AI_MD2_MAGIC_NUMBER_LE)
{
throw new ImportErrorException( "Invalid md2 file: Magic bytes not found");
}
// check file format version
if (this->m_pcHeader->version != 8)
{
throw new ImportErrorException( "Unsupported md3 file version");
}
// check some values whether they are valid
if (0 == this->m_pcHeader->numFrames)
{
throw new ImportErrorException( "Invalid md2 file: NUM_FRAMES is 0");
}
if (this->m_pcHeader->offsetEnd > (int32_t)fileSize)
{
throw new ImportErrorException( "Invalid md2 file: File is too small");
}
// there won't be more than one mesh inside the file
pScene->mNumMaterials = 1;
pScene->mRootNode = new aiNode();
pScene->mRootNode->mNumMeshes = 1;
pScene->mRootNode->mMeshes = new unsigned int[1];
pScene->mRootNode->mMeshes[0] = 0;
pScene->mMaterials = new aiMaterial*[1];
pScene->mMaterials[0] = new MaterialHelper();
pScene->mNumMeshes = 1;
pScene->mMeshes = new aiMesh*[1];
pScene->mMeshes[0] = new aiMesh();
// navigate to the begin of the frame data
const MD2::Frame* pcFrame = (const MD2::Frame*) ((unsigned char*)this->m_pcHeader +
this->m_pcHeader->offsetFrames);
// navigate to the begin of the triangle data
MD2::Triangle* pcTriangles = (MD2::Triangle*) ((unsigned char*)this->m_pcHeader +
this->m_pcHeader->offsetTriangles);
// navigate to the begin of the tex coords data
const MD2::TexCoord* pcTexCoords = (const MD2::TexCoord*) ((unsigned char*)this->m_pcHeader +
this->m_pcHeader->offsetTexCoords);
// navigate to the begin of the vertex data
const MD2::Vertex* pcVerts = (const MD2::Vertex*) (pcFrame->vertices);
pScene->mMeshes[0]->mNumFaces = this->m_pcHeader->numTriangles;
pScene->mMeshes[0]->mFaces = new aiFace[this->m_pcHeader->numTriangles];
// temporary vectors for position/texture coordinates/normals
std::vector<aiVector3D> vPositions;
std::vector<aiVector3D> vTexCoords;
std::vector<aiVector3D> vNormals;
vPositions.resize(this->m_pcHeader->numVertices,aiVector3D());
vTexCoords.resize(this->m_pcHeader->numVertices,aiVector3D(
std::numeric_limits<float>::quiet_NaN(),
std::numeric_limits<float>::quiet_NaN(),0.0f));
vNormals.resize(this->m_pcHeader->numVertices,aiVector3D());
// not sure whether there are MD2 files without texture coordinates
if (0 != this->m_pcHeader->numTexCoords && 0 != this->m_pcHeader->numSkins)
{
// navigate to the first texture associated with the mesh
const MD2::Skin* pcSkins = (const MD2::Skin*) ((unsigned char*)this->m_pcHeader +
this->m_pcHeader->offsetSkins);
const int iMode = (int)aiShadingMode_Gouraud;
MaterialHelper* pcHelper = (MaterialHelper*)pScene->mMaterials[0];
pcHelper->AddProperty<int>(&iMode, 1, AI_MATKEY_SHADING_MODEL);
aiColor3D clr;
clr.b = clr.g = clr.r = 1.0f;
pcHelper->AddProperty<aiColor3D>(&clr, 1,AI_MATKEY_COLOR_DIFFUSE);
pcHelper->AddProperty<aiColor3D>(&clr, 1,AI_MATKEY_COLOR_SPECULAR);
clr.b = clr.g = clr.r = 0.05f;
pcHelper->AddProperty<aiColor3D>(&clr, 1,AI_MATKEY_COLOR_AMBIENT);
aiString szString;
const size_t iLen = strlen(pcSkins->name);
memcpy(szString.data,pcSkins->name,iLen+1);
szString.length = iLen-1;
pcHelper->AddProperty(&szString,AI_MATKEY_TEXTURE_DIFFUSE(0));
}
else
{
// apply a default material
const int iMode = (int)aiShadingMode_Gouraud;
MaterialHelper* pcHelper = (MaterialHelper*)pScene->mMaterials[0];
pcHelper->AddProperty<int>(&iMode, 1, AI_MATKEY_SHADING_MODEL);
aiColor3D clr;
clr.b = clr.g = clr.r = 0.6f;
pcHelper->AddProperty<aiColor3D>(&clr, 1,AI_MATKEY_COLOR_DIFFUSE);
pcHelper->AddProperty<aiColor3D>(&clr, 1,AI_MATKEY_COLOR_SPECULAR);
clr.b = clr.g = clr.r = 0.05f;
pcHelper->AddProperty<aiColor3D>(&clr, 1,AI_MATKEY_COLOR_AMBIENT);
}
// now read all vertices of the frame
for (unsigned int i = 0; i < (unsigned int)this->m_pcHeader->numVertices;++i)
{
// read x,y, and z component of the vertex
aiVector3D& vec = vPositions[i];
vec.x = (float)pcVerts[i].vertex[0] * pcFrame->scale[0];
vec.x += pcFrame->translate[0];
// (flip z and y component)
vec.z = (float)pcVerts[i].vertex[1] * pcFrame->scale[1];
vec.z += pcFrame->translate[1];
vec.y = (float)pcVerts[i].vertex[2] * pcFrame->scale[2];
vec.y += pcFrame->translate[2];
// read the normal vector from the precalculated normal table
vNormals[i] = *((const aiVector3D*)(&g_avNormals[std::min(
int(pcVerts[i].lightNormalIndex),
int(sizeof(g_avNormals) / sizeof(g_avNormals[0]))-1)]));
std::swap ( vNormals[i].y,vNormals[i].z );
}
// now read all triangles of the first frame, apply scaling and translation
if (0 != this->m_pcHeader->numTexCoords)
{
for (unsigned int i = 0; i < (unsigned int)this->m_pcHeader->numTriangles;++i)
{
// allocate the face
pScene->mMeshes[0]->mFaces[i].mIndices = new unsigned int[3];
pScene->mMeshes[0]->mFaces[i].mNumIndices = 3;
// copy texture coordinates
// check whether they are different from the previous value at this index.
// In this case, create a full separate set of vertices/normals/texcoords
for (unsigned int c = 0; c < 3;++c)
{
// validate vertex indices
if (pcTriangles[i].vertexIndices[c] >= this->m_pcHeader->numVertices)
pcTriangles[i].vertexIndices[c] = this->m_pcHeader->numVertices-1;
// copy face indices
pScene->mMeshes[0]->mFaces[i].mIndices[c] = (unsigned int)pcTriangles[i].vertexIndices[c];
// validate texture coordinates
if (pcTriangles[i].textureIndices[c] >= this->m_pcHeader->numTexCoords)
pcTriangles[i].textureIndices[c] = this->m_pcHeader->numTexCoords-1;
aiVector3D* pcOut = &vTexCoords[pScene->mMeshes[0]->mFaces[i].mIndices[c]];
float u,v;
u = (float)pcTexCoords[pcTriangles[i].textureIndices[c]].s / this->m_pcHeader->skinWidth;
v = (float)pcTexCoords[pcTriangles[i].textureIndices[c]].t / this->m_pcHeader->skinHeight;
if ( is_not_qnan ( pcOut->x ) && (pcOut->x != u || pcOut->y != v))
{
// generate a separate vertex/index set
vTexCoords.push_back(aiVector3D(u,v,0.0f));
vPositions.push_back(vPositions[pcTriangles[i].vertexIndices[c]]);
vNormals.push_back(vPositions[pcTriangles[i].vertexIndices[c]]);
unsigned int iPos = vTexCoords.size()-1;
pScene->mMeshes[0]->mFaces[i].mIndices[c] = iPos;
}
else
{
pcOut->x = u;
pcOut->y = v;
}
}
}
}
else
{
for (unsigned int i = 0; i < (unsigned int)this->m_pcHeader->numTriangles;++i)
{
// allocate the face
pScene->mMeshes[0]->mFaces[i].mIndices = new unsigned int[3];
pScene->mMeshes[0]->mFaces[i].mNumIndices = 3;
// validate vertex indices
if (pcTriangles[i].vertexIndices[0] >= this->m_pcHeader->numVertices)
pcTriangles[i].vertexIndices[0] = this->m_pcHeader->numVertices-1;
if (pcTriangles[i].vertexIndices[1] >= this->m_pcHeader->numVertices)
pcTriangles[i].vertexIndices[1] = this->m_pcHeader->numVertices-1;
if (pcTriangles[i].vertexIndices[2] >= this->m_pcHeader->numVertices)
pcTriangles[i].vertexIndices[2] = this->m_pcHeader->numVertices-1;
// copy face indices
pScene->mMeshes[0]->mFaces[i].mIndices[0] = (unsigned int)pcTriangles[i].vertexIndices[0];
pScene->mMeshes[0]->mFaces[i].mIndices[1] = (unsigned int)pcTriangles[i].vertexIndices[1];
pScene->mMeshes[0]->mFaces[i].mIndices[2] = (unsigned int)pcTriangles[i].vertexIndices[2];
}
}
// allocate output storage
pScene->mMeshes[0]->mNumVertices = vPositions.size();
pScene->mMeshes[0]->mVertices = new aiVector3D[vPositions.size()];
pScene->mMeshes[0]->mNormals = new aiVector3D[vPositions.size()];
pScene->mMeshes[0]->mTextureCoords[0] = new aiVector3D[vPositions.size()];
// memcpy() the data to the c-syle arrays
memcpy(pScene->mMeshes[0]->mVertices, &vPositions[0], vPositions.size() * sizeof(aiVector3D));
memcpy(pScene->mMeshes[0]->mNormals, &vNormals[0], vPositions.size() * sizeof(aiVector3D));
memcpy(pScene->mMeshes[0]->mTextureCoords[0], &vTexCoords[0], vPositions.size() * sizeof(aiVector3D));
return;
}