assimp/port/PyAssimp/pyassimp/core.py

546 lines
20 KiB
Python
Raw Normal View History

"""
PyAssimp
This is the main-module of PyAssimp.
"""
import sys
if sys.version_info < (2,6):
raise RuntimeError('pyassimp: need python 2.6 or newer')
# xrange was renamed range in Python 3 and the original range from Python 2 was removed.
# To keep compatibility with both Python 2 and 3, xrange is set to range for version 3.0 and up.
if sys.version_info >= (3,0):
xrange = range
try: import numpy
except ImportError: numpy = None
import logging
import ctypes
logger = logging.getLogger("pyassimp")
# attach default null handler to logger so it doesn't complain
# even if you don't attach another handler to logger
logger.addHandler(logging.NullHandler())
from . import structs
from . import helper
from . import postprocess
from .errors import AssimpError
class AssimpLib(object):
"""
Assimp-Singleton
"""
load, load_mem, export, export_blob, release, dll = helper.search_library()
_assimp_lib = AssimpLib()
def make_tuple(ai_obj, type = None):
res = None
#notes:
# ai_obj._fields_ = [ ("attr", c_type), ... ]
# getattr(ai_obj, e[0]).__class__ == float
if isinstance(ai_obj, structs.Matrix4x4):
if numpy:
res = numpy.array([getattr(ai_obj, e[0]) for e in ai_obj._fields_]).reshape((4,4))
#import pdb;pdb.set_trace()
else:
res = [getattr(ai_obj, e[0]) for e in ai_obj._fields_]
res = [res[i:i+4] for i in xrange(0,16,4)]
elif isinstance(ai_obj, structs.Matrix3x3):
if numpy:
res = numpy.array([getattr(ai_obj, e[0]) for e in ai_obj._fields_]).reshape((3,3))
else:
res = [getattr(ai_obj, e[0]) for e in ai_obj._fields_]
res = [res[i:i+3] for i in xrange(0,9,3)]
else:
if numpy:
res = numpy.array([getattr(ai_obj, e[0]) for e in ai_obj._fields_])
else:
res = [getattr(ai_obj, e[0]) for e in ai_obj._fields_]
return res
# Returns unicode object for Python 2, and str object for Python 3.
def _convert_assimp_string(assimp_string):
if sys.version_info >= (3, 0):
return str(assimp_string.data, errors='ignore')
else:
return unicode(assimp_string.data, errors='ignore')
# It is faster and more correct to have an init function for each assimp class
def _init_face(aiFace):
aiFace.indices = [aiFace.mIndices[i] for i in range(aiFace.mNumIndices)]
assimp_struct_inits = { structs.Face : _init_face }
def call_init(obj, caller = None):
if helper.hasattr_silent(obj,'contents'): #pointer
_init(obj.contents, obj, caller)
else:
_init(obj,parent=caller)
def _is_init_type(obj):
if helper.hasattr_silent(obj,'contents'): #pointer
return _is_init_type(obj[0])
# null-pointer case that arises when we reach a mesh attribute
# like mBitangents which use mNumVertices rather than mNumBitangents
# so it breaks the 'is iterable' check.
# Basically:
# FIXME!
elif not bool(obj):
return False
tname = obj.__class__.__name__
return not (tname[:2] == 'c_' or tname == 'Structure' \
or tname == 'POINTER') and not isinstance(obj,int)
def _init(self, target = None, parent = None):
"""
Custom initialize() for C structs, adds safely accessible member functionality.
:param target: set the object which receive the added methods. Useful when manipulating
pointers, to skip the intermediate 'contents' deferencing.
"""
if not target:
target = self
dirself = dir(self)
for m in dirself:
if m.startswith("_"):
continue
if m.startswith('mNum'):
if 'm' + m[4:] in dirself:
continue # will be processed later on
else:
name = m[1:].lower()
obj = getattr(self, m)
setattr(target, name, obj)
continue
if m == 'mName':
target.name = str(_convert_assimp_string(self.mName))
target.__class__.__repr__ = lambda x: str(x.__class__) + "(" + getattr(x, 'name','') + ")"
target.__class__.__str__ = lambda x: getattr(x, 'name', '')
continue
name = m[1:].lower()
obj = getattr(self, m)
# Create tuples
if isinstance(obj, structs.assimp_structs_as_tuple):
setattr(target, name, make_tuple(obj))
logger.debug(str(self) + ": Added array " + str(getattr(target, name)) + " as self." + name.lower())
continue
if m.startswith('m'):
if name == "parent":
setattr(target, name, parent)
logger.debug("Added a parent as self." + name)
continue
if helper.hasattr_silent(self, 'mNum' + m[1:]):
length = getattr(self, 'mNum' + m[1:])
# -> special case: properties are
# stored as a dict.
if m == 'mProperties':
setattr(target, name, _get_properties(obj, length))
continue
if not length: # empty!
setattr(target, name, [])
logger.debug(str(self) + ": " + name + " is an empty list.")
continue
try:
if obj._type_ in structs.assimp_structs_as_tuple:
if numpy:
setattr(target, name, numpy.array([make_tuple(obj[i]) for i in range(length)], dtype=numpy.float32))
logger.debug(str(self) + ": Added an array of numpy arrays (type "+ str(type(obj)) + ") as self." + name)
else:
setattr(target, name, [make_tuple(obj[i]) for i in range(length)])
logger.debug(str(self) + ": Added a list of lists (type "+ str(type(obj)) + ") as self." + name)
else:
setattr(target, name, [obj[i] for i in range(length)]) #TODO: maybe not necessary to recreate an array?
logger.debug(str(self) + ": Added list of " + str(obj) + " " + name + " as self." + name + " (type: " + str(type(obj)) + ")")
# initialize array elements
try:
init = assimp_struct_inits[type(obj[0])]
except KeyError:
if _is_init_type(obj[0]):
for e in getattr(target, name):
call_init(e, target)
else:
for e in getattr(target, name):
init(e)
except IndexError:
logger.error("in " + str(self) +" : mismatch between mNum" + name + " and the actual amount of data in m" + name + ". This may be due to version mismatch between libassimp and pyassimp. Quitting now.")
sys.exit(1)
except ValueError as e:
logger.error("In " + str(self) + "->" + name + ": " + str(e) + ". Quitting now.")
if "setting an array element with a sequence" in str(e):
logger.error("Note that pyassimp does not currently "
"support meshes with mixed triangles "
"and quads. Try to load your mesh with"
" a post-processing to triangulate your"
" faces.")
raise e
else: # starts with 'm' but not iterable
setattr(target, name, obj)
logger.debug("Added " + name + " as self." + name + " (type: " + str(type(obj)) + ")")
if _is_init_type(obj):
call_init(obj, target)
if isinstance(self, structs.Mesh):
_finalize_mesh(self, target)
if isinstance(self, structs.Texture):
_finalize_texture(self, target)
if isinstance(self, structs.Metadata):
_finalize_metadata(self, target)
return self
def pythonize_assimp(type, obj, scene):
""" This method modify the Assimp data structures
to make them easier to work with in Python.
Supported operations:
- MESH: replace a list of mesh IDs by reference to these meshes
- ADDTRANSFORMATION: add a reference to an object's transformation taken from their associated node.
:param type: the type of modification to operate (cf above)
:param obj: the input object to modify
:param scene: a reference to the whole scene
"""
if type == "MESH":
meshes = []
for i in obj:
meshes.append(scene.meshes[i])
return meshes
if type == "ADDTRANSFORMATION":
def getnode(node, name):
if node.name == name: return node
for child in node.children:
n = getnode(child, name)
if n: return n
node = getnode(scene.rootnode, obj.name)
if not node:
raise AssimpError("Object " + str(obj) + " has no associated node!")
setattr(obj, "transformation", node.transformation)
def recur_pythonize(node, scene):
'''
Recursively call pythonize_assimp on
nodes tree to apply several post-processing to
pythonize the assimp datastructures.
'''
node.meshes = pythonize_assimp("MESH", node.meshes, scene)
for mesh in node.meshes:
mesh.material = scene.materials[mesh.materialindex]
for cam in scene.cameras:
pythonize_assimp("ADDTRANSFORMATION", cam, scene)
for c in node.children:
recur_pythonize(c, scene)
def load(filename,
file_type = None,
processing = postprocess.aiProcess_Triangulate):
'''
Load a model into a scene. On failure throws AssimpError.
Arguments
---------
filename: Either a filename or a file object to load model from.
If a file object is passed, file_type MUST be specified
Otherwise Assimp has no idea which importer to use.
This is named 'filename' so as to not break legacy code.
processing: assimp postprocessing parameters. Verbose keywords are imported
from postprocessing, and the parameters can be combined bitwise to
generate the final processing value. Note that the default value will
triangulate quad faces. Example of generating other possible values:
processing = (pyassimp.postprocess.aiProcess_Triangulate |
pyassimp.postprocess.aiProcess_OptimizeMeshes)
file_type: string of file extension, such as 'stl'
Returns
---------
Scene object with model data
'''
if hasattr(filename, 'read'):
# This is the case where a file object has been passed to load.
# It is calling the following function:
# const aiScene* aiImportFileFromMemory(const char* pBuffer,
# unsigned int pLength,
# unsigned int pFlags,
# const char* pHint)
if file_type is None:
raise AssimpError('File type must be specified when passing file objects!')
data = filename.read()
model = _assimp_lib.load_mem(data,
len(data),
processing,
file_type)
else:
# a filename string has been passed
model = _assimp_lib.load(filename.encode(sys.getfilesystemencoding()), processing)
if not model:
raise AssimpError('Could not import file!')
scene = _init(model.contents)
recur_pythonize(scene.rootnode, scene)
return scene
def export(scene,
filename,
file_type = None,
processing = postprocess.aiProcess_Triangulate):
'''
Export a scene. On failure throws AssimpError.
Arguments
---------
scene: scene to export.
filename: Filename that the scene should be exported to.
file_type: string of file exporter to use. For example "collada".
processing: assimp postprocessing parameters. Verbose keywords are imported
from postprocessing, and the parameters can be combined bitwise to
generate the final processing value. Note that the default value will
triangulate quad faces. Example of generating other possible values:
processing = (pyassimp.postprocess.aiProcess_Triangulate |
pyassimp.postprocess.aiProcess_OptimizeMeshes)
'''
exportStatus = _assimp_lib.export(ctypes.pointer(scene), file_type.encode("ascii"), filename.encode(sys.getfilesystemencoding()), processing)
if exportStatus != 0:
raise AssimpError('Could not export scene!')
def export_blob(scene,
file_type = None,
processing = postprocess.aiProcess_Triangulate):
'''
Export a scene and return a blob in the correct format. On failure throws AssimpError.
Arguments
---------
scene: scene to export.
file_type: string of file exporter to use. For example "collada".
processing: assimp postprocessing parameters. Verbose keywords are imported
from postprocessing, and the parameters can be combined bitwise to
generate the final processing value. Note that the default value will
triangulate quad faces. Example of generating other possible values:
processing = (pyassimp.postprocess.aiProcess_Triangulate |
pyassimp.postprocess.aiProcess_OptimizeMeshes)
Returns
---------
Pointer to structs.ExportDataBlob
'''
exportBlobPtr = _assimp_lib.export_blob(ctypes.pointer(scene), file_type.encode("ascii"), processing)
if exportBlobPtr == 0:
raise AssimpError('Could not export scene to blob!')
return exportBlobPtr
def release(scene):
_assimp_lib.release(ctypes.pointer(scene))
def _finalize_texture(tex, target):
setattr(target, "achformathint", tex.achFormatHint)
if numpy:
data = numpy.array([make_tuple(getattr(tex, "pcData")[i]) for i in range(tex.mWidth * tex.mHeight)])
else:
data = [make_tuple(getattr(tex, "pcData")[i]) for i in range(tex.mWidth * tex.mHeight)]
setattr(target, "data", data)
def _finalize_mesh(mesh, target):
""" Building of meshes is a bit specific.
We override here the various datasets that can
not be process as regular fields.
For instance, the length of the normals array is
mNumVertices (no mNumNormals is available)
"""
nb_vertices = getattr(mesh, "mNumVertices")
def fill(name):
mAttr = getattr(mesh, name)
if numpy:
if mAttr:
data = numpy.array([make_tuple(getattr(mesh, name)[i]) for i in range(nb_vertices)], dtype=numpy.float32)
setattr(target, name[1:].lower(), data)
else:
setattr(target, name[1:].lower(), numpy.array([], dtype="float32"))
else:
if mAttr:
data = [make_tuple(getattr(mesh, name)[i]) for i in range(nb_vertices)]
setattr(target, name[1:].lower(), data)
else:
setattr(target, name[1:].lower(), [])
def fillarray(name):
mAttr = getattr(mesh, name)
data = []
for index, mSubAttr in enumerate(mAttr):
if mSubAttr:
data.append([make_tuple(getattr(mesh, name)[index][i]) for i in range(nb_vertices)])
if numpy:
setattr(target, name[1:].lower(), numpy.array(data, dtype=numpy.float32))
else:
setattr(target, name[1:].lower(), data)
fill("mNormals")
fill("mTangents")
fill("mBitangents")
fillarray("mColors")
fillarray("mTextureCoords")
# prepare faces
if numpy:
faces = numpy.array([f.indices for f in target.faces], dtype=numpy.int32)
else:
faces = [f.indices for f in target.faces]
setattr(target, 'faces', faces)
def _init_metadata_entry(entry):
entry.type = entry.mType
if entry.type == structs.MetadataEntry.AI_BOOL:
entry.data = ctypes.cast(entry.mData, ctypes.POINTER(ctypes.c_bool)).contents.value
elif entry.type == structs.MetadataEntry.AI_INT32:
entry.data = ctypes.cast(entry.mData, ctypes.POINTER(ctypes.c_int32)).contents.value
elif entry.type == structs.MetadataEntry.AI_UINT64:
entry.data = ctypes.cast(entry.mData, ctypes.POINTER(ctypes.c_uint64)).contents.value
elif entry.type == structs.MetadataEntry.AI_FLOAT:
entry.data = ctypes.cast(entry.mData, ctypes.POINTER(ctypes.c_float)).contents.value
elif entry.type == structs.MetadataEntry.AI_DOUBLE:
entry.data = ctypes.cast(entry.mData, ctypes.POINTER(ctypes.c_double)).contents.value
elif entry.type == structs.MetadataEntry.AI_AISTRING:
assimp_string = ctypes.cast(entry.mData, ctypes.POINTER(structs.String)).contents
entry.data = _convert_assimp_string(assimp_string)
elif entry.type == structs.MetadataEntry.AI_AIVECTOR3D:
assimp_vector = ctypes.cast(entry.mData, ctypes.POINTER(structs.Vector3D)).contents
entry.data = make_tuple(assimp_vector)
return entry
def _finalize_metadata(metadata, target):
""" Building the metadata object is a bit specific.
Firstly, there are two separate arrays: one with metadata keys and one
with metadata values, and there are no corresponding mNum* attributes,
so the C arrays are not converted to Python arrays using the generic
code in the _init function.
Secondly, a metadata entry value has to be cast according to declared
metadata entry type.
"""
length = metadata.mNumProperties
setattr(target, 'keys', [str(_convert_assimp_string(metadata.mKeys[i])) for i in range(length)])
setattr(target, 'values', [_init_metadata_entry(metadata.mValues[i]) for i in range(length)])
class PropertyGetter(dict):
def __getitem__(self, key):
semantic = 0
if isinstance(key, tuple):
key, semantic = key
return dict.__getitem__(self, (key, semantic))
def keys(self):
for k in dict.keys(self):
yield k[0]
def __iter__(self):
return self.keys()
def items(self):
for k, v in dict.items(self):
yield k[0], v
def _get_properties(properties, length):
"""
Convenience Function to get the material properties as a dict
and values in a python format.
"""
result = {}
#read all properties
for p in [properties[i] for i in range(length)]:
#the name
p = p.contents
key = str(_convert_assimp_string(p.mKey))
key = (key.split('.')[1], p.mSemantic)
#the data
if p.mType == 1:
arr = ctypes.cast(p.mData,
ctypes.POINTER(ctypes.c_float * int(p.mDataLength/ctypes.sizeof(ctypes.c_float)))
).contents
value = [x for x in arr]
elif p.mType == 3: #string can't be an array
value = _convert_assimp_string(ctypes.cast(p.mData, ctypes.POINTER(structs.MaterialPropertyString)).contents)
elif p.mType == 4:
arr = ctypes.cast(p.mData,
ctypes.POINTER(ctypes.c_int * int(p.mDataLength/ctypes.sizeof(ctypes.c_int)))
).contents
value = [x for x in arr]
else:
value = p.mData[:p.mDataLength]
if len(value) == 1:
[value] = value
result[key] = value
return PropertyGetter(result)
def decompose_matrix(matrix):
if not isinstance(matrix, structs.Matrix4x4):
raise AssimpError("pyassimp.decompose_matrix failed: Not a Matrix4x4!")
scaling = structs.Vector3D()
rotation = structs.Quaternion()
position = structs.Vector3D()
_assimp_lib.dll.aiDecomposeMatrix(ctypes.pointer(matrix),
ctypes.byref(scaling),
ctypes.byref(rotation),
ctypes.byref(position))
return scaling._init(), rotation._init(), position._init()